skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of newly measured 26Al( n ,  p )26Mg and 26Al( n , α)23Na reaction rates on the nucleosynthesis of 26Al in stars
ABSTRACT The cosmic production of the short-lived radioactive nuclide 26Al is crucial for our understanding of the evolution of stars and galaxies. However, simulations of the stellar sites producing 26Al are still weakened by significant nuclear uncertainties. We re-evaluate the 26Al(n, p)26Mg, and 26Al(n, α)23Na ground state reactivities from 0.01 GK to 10 GK, based on the recent n_TOF measurement combined with theoretical predictions and a previous measurement at higher energies, and test their impact on stellar nucleosynthesis. We computed the nucleosynthesis of low- and high-mass stars using the Monash nucleosynthesis code, the NuGrid mppnp code, and the FUNS stellar evolutionary code. Our low-mass stellar models cover the 2–3 M⊙ mass range with metallicities between Z = 0.01 and 0.02, their predicted 26Al/27Al ratios are compared to 62 meteoritic SiC grains. For high-mass stars, we test our reactivities on two 15 M⊙ models with Z = 0.006 and 0.02. The new reactivities allow low-mass AGB stars to reproduce the full range of 26Al/27Al ratios measured in SiC grains. The final 26Al abundance in high-mass stars, at the point of highest production, varies by a factor of 2.4 when adopting the upper, or lower limit of our rates. However, stellar uncertainties still play an important role in both mass regimes. The new reactivities visibly impact both low- and high-mass stars nucleosynthesis and allow a general improvement in the comparison between stardust SiC grains and low-mass star models. Concerning explosive nucleosynthesis, an improvement of the current uncertainties between T9∼0.3 and 2.5 is needed for future studies.  more » « less
Award ID(s):
1927130
PAR ID:
10464293
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
520
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2436 to 2444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Certain types of silicon carbide (SiC) grains, e.g. SiC-X grains, and low density (LD) graphites are C-rich presolar grains that are thought to have condensed in the ejecta of core-collapse supernovae (CCSNe). In this work, we compare C, N, Al, Si, and Ti isotopic abundances measured in presolar grains with the predictions of 21 CCSN models. The impact of a range of SN explosion energies is considered, with the high energy models favouring the formation of a C/Si zone enriched in 12C, 28Si, and 44Ti. Eighteen of the 21 models have H ingested into the He-shell and different abundances of H remaining from such H-ingestion. CCSN models with intermediate to low energy (that do not develop a C/Si zone) cannot reproduce the 28Si and 44Ti isotopic abundances in grains without assuming mixing with O-rich CCSN ejecta. The most 28Si-rich grains are reproduced by energetic models when material from the C/Si zone is mixed with surrounding C-rich material, and the observed trends of the 44Ti/48Ti and 49Ti/48Ti ratios are consistent with the C-rich C/Si zone. For the models with H-ingestion, high and intermediate explosion energies allow the production of enough 26Al to reproduce the 26Al/27Al measurements of most SiC-X and LD graphites. In both cases, the highest 26Al/27Al ratio is obtained with H still present at XH ≈ 0.0024 in He-shell material when the SN shock is passing. The existence of H in the former convective He-shell points to late H-ingestion events in the last days before massive stars explode as a supernova. 
    more » « less
  2. Asymptotic Giant Branch (AGB) stars play a key role in the chemical evolution of galaxies. These stars are the fundamental stellar site for the production of light elements such as C, N and F, and half of the elements heavier than Fe via the slow neutron capture process (s-process). Hence, detailed computational models of AGB stars’ evolution and nucleosynthesis are essential for galactic chemical evolution. In this work, we discuss the progress in updating the NuGrid data set of AGB stellar models and abundance yields. All stellar models have been computed using the MESA stellar evolution code, coupled with the post-processing mppnp code to calculate the full nucleosynthesis. The final data set will include the initial masses Mini/M⊙ = 1, 1.65, 2, 3, 4, 5, 6 and 7 for initial metallicities Z = 0.0001, 0.001, 0.006, 0.01, 0.02 and 0.03. Observed s-process abundances on the surfaces of evolved stars as well as the typical light elements in the composition of H-deficient post-AGB stars are reproduced. A key short-term goal is to complete and expand the AGB stars data set for the full metallicity range. Chemical yield tables are provided for the available models. 
    more » « less
  3. null (Ed.)
    The slow neutron-capture process (s-process) efficiency in low-mass AGB stars (1.5 < M/M⊙ < 3) critically depends on how mixing processes in stellar interiors are handled, which is still affected by considerable uncertainties. In this work, we compute the evolution and nucleosynthesis of low-mass AGB stars at low metallicities using the MESA stellar evolution code. The combined data set includes models with initial masses Mini/M⊙=2 and 3 for initial metallicities Z=0.001 and 0.002. The nucleosynthesis was calculated for all relevant isotopes by post-processing with the NuGrid mppnp code. Using these models, we show the impact of the uncertainties affecting the main mixing processes on heavy element nucleosynthesis, such as convection and mixing at convective boundaries. We finally compare our theoretical predictions with observed surface abundances on low-metallicity stars. We find that mixing at the interface between the He-intershell and the CO-core has a critical impact on the s-process at low metallicities, and its importance is comparable to convective boundary mixing processes under the convective envelope, which determine the formation and size of the 13C-pocket. Additionally, our results indicate that models with very low to no mixing below the He-intershell during thermal pulses, and with a 13C-pocket size of at least ∼3 × 10−4 M⊙, are strongly favored in reproducing observations. Online access to complete yield data tables is also provided. 
    more » « less
  4. ABSTRACT We report isotope data for C, N, Al, Si, and S of 33 presolar SiC and Si3N4 grains (0.3–1.6 $$\mu$$m) of Type X, C, D, and N from the Murchison CM2 meteorite of likely core-collapse supernova (CCSN) origin which we discuss together with data of six SiC X grains from an earlier study. The isotope data are discussed in the context of hydrogen ingestion supernova (SN) models. We have modified previously used ad-hoc mixing schemes in that we considered (i) heterogeneous H ingestion into the He shell of the pre-SN star, (ii) a variable C-N fractionation for the condensation of SiC grains in the SN ejecta, and (iii) smaller mass units for better fine-tuning. With our modified ad-hoc mixing approach over small scales (0.2–0.4 M⊙), with major contributions from the O-rich O/nova zone, we find remarkably good fits (within a few per cent) for 12C/13C, 26Al/27Al, and 29Si/28Si ratios. The 14N/15N ratio of SiC grains can be well matched if variable C-N fractionation is considered. However, the Si3N4 isotope data point to overproduction of 15N in hydrogen ingestion CCSN models and lower C-N fractionation during SiC condensation than applied here. Our ad-hoc mixing approach based on current CCSN models suggests that the O-rich O/nova zone, which uniquely combines explosive H- and He-burning signatures, is favourable for SiC and Si3N4 formation. The effective range of C/O abundance variations in the He shell triggered by H ingestion events in the massive star progenitor is currently not well constrained and needs further investigation. 
    more » « less
  5. Presolar grains constitute the remnants of stars that existed before the formation of the solar system. In addition to providing direct information on the materials from which the solar system formed, these grains provide ground-truth information for models of stellar evolution and nucleosynthesis. Here we report the in situ identification of two unique presolar graphite grains from the primitive meteorite LaPaz Icefield 031117. Based on these two graphite grains, we estimate a bulk presolar graphite abundance of {5}-3+7 ppm in this meteorite. One of the grains (LAP-141) is characterized by an enrichment in 12C and depletions in 33,34S, and contains a small iron sulfide subgrain, representing the first unambiguous identification of presolar iron sulfide. The other grain (LAP-149) is extremely 13C-rich and 15N-poor, with one of the lowest 12C/13C ratios observed among presolar grains. Comparison of its isotopic compositions with new stellar nucleosynthesis and dust condensation models indicates an origin in the ejecta of a low-mass CO nova. Grain LAP-149 is the first putative nova grain that quantitatively best matches nova model predictions, providing the first strong evidence for graphite condensation in nova ejecta. Our discovery confirms that CO nova graphite and presolar iron sulfide contributed to the original building blocks of the solar system. 
    more » « less