skip to main content

This content will become publicly available on October 1, 2024

Title: The soil pore structure encountered by roots affects plant‐derived carbon inputs and fate
Summary Plant roots are the main supplier of carbon (C) to the soil, the largest terrestrial C reservoir. Soil pore structure drives root growth, yet how it affects belowground C inputs remains a critical knowledge gap. By combining X‐ray computed tomography with 14 C plant labelling, we identified root–soil contact as a previously unrecognised influence on belowground plant C allocations and on the fate of plant‐derived C in the soil. Greater contact with the surrounding soil, when the growing root encounters a pore structure dominated by small (< 40 μm Ø) pores, results in strong rhizodeposition but in areas of high microbial activity. The root system of Rudbeckia hirta revealed high plasticity and thus maintained high root–soil contact. This led to greater C inputs across a wide range of soil pore structures. The root–soil contact Panicum virgatum , a promising bioenergy feedstock crop, was sensitive to the encountered structure. Pore structure built by a polyculture, for example, restored prairie, can be particularly effective in promoting lateral root growth and thus root–soil contact and associated C benefits. The findings suggest that the interaction of pore structure with roots is an important, previously unrecognised, stimulus of soil C gains.  more » « less
Award ID(s):
1832042 2224712
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
New Phytologist
Page Range / eLocation ID:
515 to 528
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Increased nutrient inputs due to anthropogenic activity are expected to increase primary productivity across terrestrial ecosystems, but changes in allocation aboveground versus belowground with nutrient addition have different implications for soil carbon (C) storage. Thus, given that roots are major contributors to soil C storage, understanding belowground net primary productivity (BNPP) and biomass responses to changes in nutrient availability is essential to predicting carbon–climate feedbacks in the context of interacting global environmental changes. To address this knowledge gap, we tested whether a decade of nitrogen (N) and phosphorus (P) fertilization consistently influenced aboveground and belowground biomass and productivity at nine grassland sites spanning a wide range of climatic and edaphic conditions in the continental United States. Fertilization effects were strong aboveground, with both N and P addition stimulating aboveground biomass at nearly all sites (by 30% and 36%, respectively, on average). P addition consistently increased root production (by 15% on average), whereas other belowground responses to fertilization were more variable, ranging from positive to negative across sites. Site‐specific responses to P were not predicted by the measured covariates. Atmospheric N deposition mediated the effect of N fertilization on root biomass and turnover. Specifically, atmospheric N deposition was positively correlated with root turnover rates, and this relationship was amplified with N addition. Nitrogen addition increased root biomass at sites with low N deposition but decreased it at sites with high N deposition. Overall, these results suggest that the effects of nutrient supply on belowground plant properties are context dependent, particularly with regard to background N supply rates, demonstrating that site conditions must be considered when predicting how grassland ecosystems will respond to increased nutrient loading from anthropogenic activity.

    more » « less
  2. Pore structure is a key determinant of soil functioning, and both root growth and activity of soil fauna are modified by and interact with pore structure in multiple ways. Cover cropping is a rapidly growing popular strategy for improving agricultural sustainability, including improvements in pore structure. However, since cover crop species encompass a variety of contrasting root architectures, they can have disparate effects on formation of soil pores and their characteristics, thus on the pore structure formation. Moreover, utilization of the existing pore systems and its modification by new root growth, in conjunction with soil fauna activity, can also vary by cover crop species, affecting the dynamics of biopores (creation and demolition). The objectives of this study were (i) to quantify the influence of 5 cover crop species on formation and size distribution of soil macropores (>36 μm Ø); (ii) to explore the changes in the originally developed pore architecture after an additional season of cover crop growth; and (iii) to assess the relative contributions of plant roots and soil fauna to fate and modifications of biopores. Intact soil cores were taken from 5 to 10 cm depth after one season of cover crop growth, followed by X-ray computed micro-tomography (CT) characterization, and then, the cores were reburied for a second root growing period of cover crops to explore subsequent changes in pore characteristics with the second CT scanning. Our data suggest that interactions of soil fauna and roots with pore structure changed over time. While in the first season, large biopores were created at the expense of small pores, in the second year these biopores were reused or destroyed by the creation of new ones through earthworm activities and large root growth. In addition, the creation of large biopores (>0.5 mm) increased total macroporosity. During the second root growing period, these large sized macropores, however, are reduced in size again through the action of soil fauna smaller than earthworms, suggesting a highly dynamic equilibrium. Different effects of cover crops on pore structure mainly arise from their differences in root volume, mean diameter as well as their reuse of existing macropores. 
    more » « less
  3. Abstract

    When aboveground materials are harvested for fuel production, such as withSorghum bicolor, the sustainability of annual bioenergy feedstocks is influenced by the ability of root inputs to contribute to the formation and persistence of soil organic matter (SOM), and to soil fertility through nutrient recycling. Using13C and15N labeling, we traced sorghum root and leaf litter‐derived C and N for 19 months in the field as they were mineralized or formedSOM. Our in situ litter incubation experiment confirms that sorghum roots and leaves significantly differ in their inherent chemical recalcitrance. This resulted in different contributions to C and N storage and recycling. Overall root residues had higher biochemical recalcitrance which led to more C retention in soil (27%) than leaf residues (19%). However, sorghum root residues resulted in higher particulate organic matter (POM) and lower mineral associated organic matter (MAOM), deemed to be the most persistent fraction in soil, than leaf residues. Additionally, the overall higher root‐derived C retention in soil led to higher N retention, reducing the immediate recycling of fertility from root as compared to leaf decomposition. Our study, conducted in a highly aggregated clay‐loam soil, emphasized the important role of aggregates in newSOMformation, particularly the efficient formation ofMAOMin microaggregate structures occluded within macroaggregates. Given the known role of roots in promoting aggregation, efficient formation ofMAOMwithin aggregates can be a major mechanism to increase persistentSOMstorage belowground when aboveground residues are removed. We conclude that promoting root inputs inS. bicolorbioenergy production systems through plant breeding efforts may be an effective means to counterbalance the aboveground residue removal. However, management strategies need to consider the quantity of inputs involved and may need to supportSOMstorage and fertility with additional organic matter additions.

    more » « less
  4. Abstract

    The location of microorganisms and substrates within soil pore networks plays a crucial role in organic carbon (C) processing, and its microbial utilization and turnover, and has direct consequences for C and nutrient cycling. An optimal approach to quantify responses to new C inputs from microorganisms residing in specific pores is the addition of new C to pores of target sizes in undisturbed soil cores. We used the matric potential approach to add14C‐labelled glucose to small (< 40 μm, root free) or large (60–180 μm, potentially inhabited by roots) pores of undisturbed soil cores. Localization of glucose‐derived C via14C imaging was related to pore size distributions and connectivity, characterized via X‐ray computed microtomography (μCT), and to β‐glucosidase activity, characterized via zymography. After 2‐week incubations, 1.3 times more glucose was mineralized (14CO2) when it was added to the large pores; however, more14C remained in microbial biomass when glucose was added to the small pores. Consequently, although utilizing the same amounts of easily available C, the microorganisms localized in the large pores had faster turnover compared to microorganisms in small pores. Stronger associations between β‐glucosidase activity and glucose‐derived C were observed when glucose was added to the large pores. We conclude that (a) the matric potential approach allows placing, albeit not exactly, of soluble substrates into pores of target diameter range, and (b) microorganisms localized in large pores respond to new C inputs with faster turnover, greater growth and more intensive enzyme production compared to those inhabiting the small pores.

    more » « less
  5. Abstract

    Despite the large contribution of rangeland and pasture to global soil organic carbon (SOC) stocks, there is considerable uncertainty about the impact of large herbivore grazing onSOC, especially for understudied subtropical grazing lands. It is well known that root system inputs are the source of most grasslandSOC, but the impact of grazing on partitioning of carbon allocation to root tissue production compared to fine root exudation is unclear. Given that different forms of root C have differing implications forSOCsynthesis and decomposition, this represents a significant gap in knowledge. Root exudates should contribute toSOCprimarily after microbial assimilation, and thus promote microbial contributions toSOCbased on stabilization of microbial necromass, whereas root litter deposition contributes directly as plant‐derivedSOCfollowing microbial decomposition. Here, we used in situ isotope pulse‐chase methodology paired with plant and soil sampling to link plant carbon allocation patterns withSOCpools in replicated long‐term grazing exclosures in subtropical pasture in Florida,USA. We quantified allocation of carbon to root tissue and measured root exudation across grazed and ungrazed plots and quantified lignin phenols to assess the relative contribution of microbial vs. plant products to totalSOC. We found that grazing exclusion was associated with dramatically less overall belowground allocation, with lower root biomass, fine root exudates, and microbial biomass. Concurrently, grazed pasture contained greater totalSOC, and a larger fraction ofSOCthat originated from plant tissue deposition, suggesting that higher root litter deposition under grazing promotes greaterSOC. We conclude that grazing effects onSOCdepend on root system biomass, a pattern that may generalize to other C4‐dominated grasslands, especially in the subtropics. Improved understanding of ecological factors underlying root system biomass may be the key to forecastingSOCand optimizing grazing management to enhanceSOCaccumulation.

    more » « less