Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently, high purity niobium is the material of choice for SRF cavities that have been optimized to operate near their theoretical field limits. This brings about the need for significant R & D efforts to develop next generation superconducting materials that could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under a high RF magnetic field without penetration of quantized magnetic vortices through the cavity wall. Therefore, the magnetic field at which vortices penetrate a superconductor is one of the key parameters of merit of SRF cavities. Techniques to measure the onset of magnetic field penetration on thin film samples need to be developed to mitigate the issues with the conventional magnetometry measurements that are strongly influenced by the film orientation and shape and edge effects. In this work, we report the development of an experimental setup to measure the field of full flux penetration through films and multi-layered superconductors. Our system combines a small superconducting solenoid that can generate a magnetic field of up to 500 mT at the sample surface and three Hall probes to detect the full flux penetration through the superconductor. This setup can be used to study alternative materials that could potentially outperform niobium, as well as superconductor–insulator–superconductor (SIS) multilayer coatings on niobium.
more »
« less
Detection of electromagnetic phase transitions using a helical cavity susceptometer
Fast and sensitive phase transition detection is one of the most important requirements for new material synthesis and characterization. For solid-state samples, microwave absorption techniques can be employed for detecting phase transitions because it simultaneously monitors changes in electronic and magnetic properties. However, microwave absorption techniques require expensive high-frequency microwave equipment and bulky hollow cavities. Due to size limitations in conventional instruments, it is challenging to implement these cavities inside a laboratory cryostat. In this work, we designed and built a susceptometer that consists of a small helical cavity embedded into a custom insert of a commercial cryostat. This cavity resonator operated at sub-GHz frequencies is extremely sensitive to changes in material parameters, such as electrical conductivity, magnetization, and electric and magnetic susceptibilities. To demonstrate its operation, we detected superconducting phase transition in Nb and YBa2Cu3O7−δ, metal–insulator transitions in V2O3, ferromagnetic transition in Gd, and magnetic field induced transformation in meta magnetic NiCoMnIn single crystals. This high sensitivity apparatus allows the detection of trace amounts of materials (10−9-cc) undergoing an electromagnetic transition in a very broad temperature (2–400 K) and magnetic field (up to 90 kOe) ranges.
more »
« less
- Award ID(s):
- 2132389
- PAR ID:
- 10464463
- Date Published:
- Journal Name:
- Review of Scientific Instruments
- Volume:
- 94
- Issue:
- 6
- ISSN:
- 0034-6748
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Superconducting radio-frequency (SRF) cavities are one of the fundamental building blocks of modern particle accelerators. To achieve the highest quality factors (1010–1011), SRF cavities are operated at liquid helium temperatures. Magnetic flux trapped on the surface of SRF cavities during cool-down below the critical temperature is one of the leading sources of residual RF losses. Instruments capable of detecting the distribution of trapped flux on the cavity surface are in high demand in order to better understand its relation to the cavity material, surface treatments and environmental conditions. We have designed, developed, and commissioned two high-resolution diagnostic tools to measure the distribution of trapped flux at the surface of SRF cavities. One is a magnetic field scanning system, which uses cryogenic Hall probes and anisotropic magnetoresistance sensors that fit the contour of a 1.3 GHz cavity. This setup has a spatial resolution of ∼13μm in the azimuthal direction and ∼1 cm along the cavity contour. The second setup is a stationary, combined magnetic and temperature mapping system, which uses anisotropic magnetoresistance sensors and carbon resistor temperature sensors, covering the surface of a 3 GHz SRF cavity. This system has a spatial resolution of 5 mm close to the iris and 11 mm at the equator. Initial results show a non-uniform distribution of trapped flux on the cavities’ surfaces, dependent on the magnitude of the applied magnetic field during field-cooling below the critical temperature.more » « less
-
Fulvio Parmigiani (Ed.)Cavity magnonics deals with the interaction of magnons — elementary excitations in magnetic materials — and confined electromagnetic fields. We introduce the basic physics and review the experimental and theoretical progress of this young field that is gearing up for integration in future quantum technologies. Much of its appeal is derived from the strong magnon–photon coupling and the easily-reached nonlinear regime in microwave cavities. The interaction of magnons with light as detected by Brillouin light scattering is enhanced in magnetic optical resonators, which can be employed to cool and heat magnons. The microwave cavity photon-mediated coupling of a magnon mode to a superconducting qubit enables measurements in the single magnon limit.more » « less
-
Optically active defects in solid-state systems have many applications in quantum information and sensing. However, unlike free atoms, which have fixed optical transition frequencies, the inhomogeneous broadening of the transitions in solid-state environments limit their use as identical scatterers for such applications. Here we show that crystals of argon and neon prepared in a closed-cycle cryostat doped with thulium atoms at cryogenic temperatures are an exception. High resolution absorption and emission spectroscopy show that the 1140 nm magnetic dipole transition is split into multiple components. The origin of this splitting is likely a combination of different classes of trapping sites, crystal field effects within each site, and hyperfine interactions. The individual lines have ensemble widths as small as 0.6 GHz, which temperature dependence and pump-probe spectroscopy indicate is likely a homogeneous effect, suggesting inhomogeneity is well below the GHz scale.more » « less
-
Spin-photon interfaces based on solid-state atomic defects have enabled a variety of key applications in quantum information processing. To maximize the light-matter coupling strength, defects are often placed inside nanoscale devices. Efficiently coupling light and microwave radiation into these structures is an experimental challenge, especially in cryogenic or high vacuum environments with limited sample access. In this work, we demonstrate a fiber-based scanning probe that simultaneously couples light into a planar photonic circuit and delivers high power microwaves for driving electron spin transitions. The optical portion achieves 46% one-way coupling efficiency, while the microwave portion supplies an AC magnetic field with strength up to 9 Gauss at 10 Watts of input microwave power. The entire probe can be scanned across a large number of devices inside a3He cryostat without free-space optical access. We demonstrate this technique with silicon nanophotonic circuits coupled to single Er3+ions.more » « less
An official website of the United States government

