Abstract Bioenergy with carbon capture and geological storage (BECCS) is considered one of the top options for both offsetting CO2emissions and removing atmospheric CO2. BECCS requires using limited land resources efficiently while ensuring minimal adverse impacts on the delicate food‐energy‐water nexus. Perennial C4 biomass crops are productive on marginal land under low‐input conditions avoiding conflict with food and feed crops. The eastern half of the contiguous U.S. contains a large amount of marginal land, which is not economically viable for food production and liable to wind and water erosion under annual cultivation. However, this land is suitable for geological CO2storage and perennial crop growth. Given the climate variation across the region, three perennials are major contenders for planting. The yield potential and stability of Miscanthus, switchgrass, and energycane across the region were compared to select which would perform best under the recent (2000–2014) and future (2036–2050) climates. Miscanthus performed best in the Midwest, switchgrass in the Northeast and energycane in the Southeast. On average, Miscanthus yield decreased from present 19.1 t/ha to future 16.8 t/ha; switchgrass yield from 3.5 to 2.4 t/ha; and energycane yield increased from 14 to 15 t/ha. Future yield stability decreased in the region with higher predicted drought stress. Combined, these crops could produce 0.6–0.62 billion tonnes biomass per year for the present and future. Using the biomass for power generation with CCS would capture 703–726 million tonnes of atmospheric CO2per year, which would offset about 11% of current total U.S. emission. Further, this biomass approximates the net primary CO2productivity of two times the current baseline productivity of existing vegetation, suggesting a huge potential for BECCS. Beyond BECCS, C4 perennial grasses could also increase soil carbon and provide biomass for emerging industries developing replacements for non‐renewable products including plastics and building materials.
more »
« less
Which crop has the highest bioethanol yield in the United States?
Annual U.S. production of bioethanol, primarily produced from corn starch in the U.S. Midwest, rose to 57 billion liters in 2021, which fulfilled the required conventional biofuel target set forth by the Energy Independence and Security Act (EISA) of 2007. At the same time, the U.S. fell short of the cellulosic or advanced biofuel target of 79 billion liters. The growth of bioenergy grasses (e.g., Miscanthus and switchgrass) across the Central and Eastern U.S. has the potential to feed enhanced cellulosic bioethanol production and, if successful, increase renewable fuel volumes. However, water consumption and climate change and its extremes are critical concerns in corn and bioenergy grass productivity. These concerns are compounded by the demands on potentially productive land areas and water devoted to producing biofuels. This is a fundamental Food-Energy-Water System (FEWS) nexus challenge. We apply a computational framework to estimate potential bioenergy yield and conversion to bioethanol yield across the U.S., based on crop field studies and conversion technology analysis for three crops—corn, Miscanthus, and two cultivars of switchgrass (Cave-in-Rock and Alamo). The current study identifies regions where each crop has its highest yield across the Center and Eastern U.S. While growing bioenergy grasses requires more water than corn, one advantage they have as a source of bioethanol is that they control nitrogen leaching relative to corn. Bioenergy grasses also maintain steadily high productivity under extreme climate conditions, such as drought and heatwaves in the year 2012 over the U.S. Midwest, because the perennial growing season and the deeper and denser roots can ameliorate the soil water stress. While the potential ethanol yield could be enhanced using energy grasses, their practical success in becoming a potential source of ethanol yield remains limited by socio-economic and operational constraints and concerns regarding competition with food production.
more »
« less
- Award ID(s):
- 1856012
- PAR ID:
- 10430681
- Date Published:
- Journal Name:
- Frontiers in Energy Research
- Volume:
- 11
- ISSN:
- 2296-598X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In order to both combat the decline of biodiversity and produce food, fuel, and fiber for a growing human population, current agricultural landscapes must transition into diversified, multifunctional systems. Perennial cellulosic biofuel crops have potential to meet both of these challenges, acting as multifunctional systems that can enhance biodiversity. What is not well understood, and what we test here, are the tradeoffs among different perennial crops in their performance as biofuels and in biodiversity conservation. Working in an established bioenergy experiment with four native, perennial, cellulosic biofuel crop varieties—ranging from monoculture to diverse restoration planting—we tested the effect of biofuel crop management on flower communities, pollinator communities, and crop yield. The greatest abundance and diversity of pollinators and flowers were in treatments that were successional (unmanaged), followed by restored prairie (seeded mix of native grasses and forbs), switchgrass, and a mix of native grasses. However, biofuel crop yield was approximately the inverse, with native grasses having the highest yield, followed by switchgrass and prairie, then successional treatments. Restored prairie was the optimal biofuel crop when both pollinator conservation and crop yield are valued similarly. We add to mounting evidence that policy is needed to create sustainable markets that value the multifunctionality of perennial biofuel systems in order to achieve greater ecosystem services from agricultural landscapes.more » « less
-
'Marginal lands' are low productivity sites abandoned from agriculture for reasons such as low or high soil water content, challenging topography, or nutrient deficiency. To avoid competition with crop production, cellulosic bioenergy crops have been proposed for cultivation on marginal lands, however on these sites they may be more strongly affected by environmental stresses such as low soil water content. In this study we used rainout shelters to induce low soil moisture on marginal lands and determine the effect of soil water stress on switchgrass growth and the subsequent production of bioethanol. Five marginal land sites that span a latitudinal gradient in Michigan and Wisconsin were planted to switchgrass in 2013 and during the 2018-2021 growing seasons were exposed to reduced precipitation under rainout shelters in comparison to ambient precipitation. The effect of reduced precipitation was related to the environmental conditions at each site and biofuel production metrics (switchgrass biomass yields and composition and ethanol production). During the first year (2018), the rainout shelters were designed with 60% rain exclusion, which did not affect biomass yields compared to ambient conditions at any of the field sites, but decreased switchgrass fermentability at the Wisconsin Central - Hancock site. In subsequent years, the shelters were redesigned to fully exclude rainfall, which led to reduced biomass yields and inhibited fermentation for three sites. When switchgrass was grown in soils with large reductions in moisture and increases in temperature, the potential for biofuel production was significantly reduced, exposing some of the challenges associated with producing biofuels from lignocellulosic biomass grown under drought conditions.more » « less
-
Abstract ‘Marginal lands’ are low productivity sites abandoned from agriculture for reasons such as low or high soil water content, challenging topography, or nutrient deficiency. To avoid competition with crop production, cellulosic bioenergy crops have been proposed for cultivation on marginal lands, however on these sites they may be more strongly affected by environmental stresses such as low soil water content. In this study we used rainout shelters to induce low soil moisture on marginal lands and determine the effect of soil water stress on switchgrass growth and the subsequent production of bioethanol. Five marginal land sites that span a latitudinal gradient in Michigan and Wisconsin were planted to switchgrass in 2013 and during the 2018–2021 growing seasons were exposed to reduced precipitation under rainout shelters in comparison to ambient precipitation. The effect of reduced precipitation was related to the environmental conditions at each site and biofuel production metrics (switchgrass biomass yields and composition and ethanol production). During the first year (2018), the rainout shelters were designed with 60% rain exclusion, which did not affect biomass yields compared to ambient conditions at any of the field sites, but decreased switchgrass fermentability at the Wisconsin Central–Hancock site. In subsequent years, the shelters were redesigned to fully exclude rainfall, which led to reduced biomass yields and inhibited fermentation for three sites. When switchgrass was grown in soils with large reductions in moisture and increases in temperature, the potential for biofuel production was significantly reduced, exposing some of the challenges associated with producing biofuels from lignocellulosic biomass grown under drought conditions.more » « less
-
Abstract Cellulosic bioenergy is a primary land‐based climate mitigation strategy, with soil carbon (C) storage and nitrogen (N) conservation as important mitigation elements. Here, we present 13 years of soil C and N change under three cellulosic cropping systems: monoculture switchgrass (Panicum virgatumL.), a five native grasses polyculture, and no‐till corn (Zea maysL.). Soil C and N fractions were measured four times over 12 years. Bulk soil C in the 0–25 cm depth at the end of the study period ranged from 28.4 (± 1.4 se) Mg C ha−1in no‐till corn, to 30.8 (± 1.4) Mg C ha−1in switchgrass, and to 34.8 (± 1.4) Mg C ha−1in native grasses. Mineral‐associated organic matter (MAOM) ranged from 60% to 90% and particulate organic matter (POM) from 10% to 40% of total soil C. Over 12 years, total C as well as both C fractions persisted under no‐till corn and switchgrass and increased under native grasses. In contrast, POM N stocks decreased 33% to 45% across systems, whereas MAOM N decreased only in no‐till corn and by less than 13%. Declining POM N stocks likely reflect pre‐establishment land use, which included alfalfa and manure in earlier rotations. Root production and large soil aggregate formation explained 69% (p < 0.001) and 36% (p = 0.024) of total soil C change, respectively, and 60% (p = 0.020) and 41% (p = 0.023) of soil N change, demonstrating the importance of belowground productivity and soil aggregates for producing and protecting soil C and conserving soil N. Differences between switchgrass and native grasses also indicate a dependence on plant diversity. Soil C and N benefits of bioenergy crops depend strongly on root productivity and pre‐establishment land use.more » « less
An official website of the United States government

