skip to main content


This content will become publicly available on August 22, 2024

Title: Flexible fluid-based encapsulation platform for water-sensitive materials
The next-generation semiconductors and devices, such as halide perovskites and flexible electronics, are extremely sensitive to water, thus demanding highly effective protection that not only seals out water in all forms (vapor, droplet, and ice), but simultaneously provides mechanical flexibility, durability, transparency, and self-cleaning. Although various solid-state encapsulation methods have been developed, no strategy is available that can fully meet all the above requirements. Here, we report a bioinspired liquid-based encapsulation strategy that offers protection from water without sacrificing the operational properties of the encapsulated materials. Using halide perovskite as a model system, we show that damage to the perovskite from exposure to water is drastically reduced when it is coated by a polymer matrix with infused hydrophobic oil. With a combination of experimental and simulation studies, we elucidated the fundamental transport mechanisms of ultralow water transmission rate that stem from the ability of the infused liquid to fill-in and reduce defects in the coating layer, thus eliminating the low-energy diffusion pathways, and to cause water molecules to diffuse as clusters, which act together as an excellent water permeation barrier. Importantly, the presence of the liquid, as the central component in this encapsulation method provides a unique possibility of reversing the water transport direction; therefore, the lifetime of enclosed water-sensitive materials could be significantly extended via replenishing the hydrophobic oils regularly. We show that the liquid encapsulation platform presented here has high potential in providing not only water protection of the functional device but also flexibility, optical transparency, and self-healing of the coating layer, which are critical for a variety of applications, such as in perovskite solar cells and bioelectronics.  more » « less
Award ID(s):
1922321
NSF-PAR ID:
10464920
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
34
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Durable hydrophobic materials have attracted considerable interest in the last century. Currently, the most popular strategy to achieve hydrophobic coating durability is through the combination of a perfluoro-compound with a mechanically robust matrix to form a composite for coating protection. The matrix structure is typically large (thicker than 10 μm), difficult to scale to arbitrary materials, and incompatible with applications requiring nanoscale thickness such as heat transfer, water harvesting, and desalination. Here, we demonstrate durable hydrophobicity and superhydrophobicity with nanoscale-thick, perfluorinated compound-free polydimethylsiloxane vitrimers that are self-healing due to the exchange of network strands. The polydimethylsiloxane vitrimer thin film maintains excellent hydrophobicity and optical transparency after scratching, cutting, and indenting. We show that the polydimethylsiloxane vitrimer thin film can be deposited through scalable dip-coating on a variety of substrates. In contrast to previous work achieving thick durable hydrophobic coatings by passively stacking protective structures, this work presents a pathway to achieving ultra-thin (thinner than 100 nm) durable hydrophobic films. 
    more » « less
  2. Abstract

    Graphene, a single layer conductor, can be combined with other functional materials for building efficient optoelectronic devices. However, transferring large‐area graphene onto another material often involves dipping the material into water and other solvents. This process is incompatible with water‐sensitive materials such as organometal halide perovskites. Here, a dry method is used and succeeded, for the first time, in stacking centimeter‐sized graphene directly onto methylammonium lead iodide thin films without exposing the perovskite film to any liquid. Photoemission spectroscopy and nanosecond time‐resolved photoelectrical measurement show that the graphene/perovskite interface does not contain significant amount of contaminants and sustain efficient interfacial electron transfer. The use of this method in fabricating graphene‐on‐perovskite photodetectors is further demonstrated. Besides a better photoresponsivity compared to detectors fabricated by the conventional perovskite‐on‐graphene structure, this dry transfer method provides a scalable pathway to incorporate graphene in multilayer devices based on water‐sensitive materials.

     
    more » « less
  3. Abstract

    Liquid‐infused silicones are a promising solution for common surface adhesion problems, such as ice accumulation and biofilm formation, yet they generally lack the tunability, mechanical durability and/or longevity essential for industrial applications. Self‐stratifying porous silicones (SPS) infused with compatible silicone oil are developed as a passive strategy to address these shortcomings. Through emulsion templating, porosity is formed in the bulk polymer, providing increased free volume for oil infusion, while a non‐porous skin layer is formed at the surface. The bulk porosity and pore size distribution of SPS are independently controlled by varying water and surfactant concentration respectively, leading to a higher volume of oil infusion and improved oil retention relative to an unmodified silicone. Despite a higher oil loading and bulk porosity, the skin layer provides liquid‐infused SPS with a comparable surface elasticity to liquid‐infused silicones. The potential of liquid‐infused SPS as a nontoxic fouling release coating for marine applications is demonstrated using laboratory assays against a variety of soft and hard fouling organisms.

     
    more » « less
  4. Abstract

    All‐inorganic lead halide perovskite nanocrystals (NCs) have great optoelectronic properties with promising applications in light‐emitting diodes (LEDs), lasers, photodetectors, solar cells, and photocatalysis. However, the intrinsic toxicity of Pb and instability of the NCs impede their broad applications. Shell‐coating is an effective method for enhanced environmental stability while reducing toxicity by choosing non‐toxic shell materials such as metal oxides, polymers, silica, etc. However, multiple perovskite NCs can be encapsulated within the shell material and a uniform epitaxial‐type shell growth of well‐isolated NCs is still challenging. In this work, lead‐free vacancy‐ordered double perovskite Cs2SnX6(X = Cl, Br, and I) shells are epitaxially grown on the surface of CsPbX3NCs by a hot‐injection method. The effectiveness of the non‐toxic double perovskite shell protection is demonstrated by the enhanced environmental and phase stability against UV illumination and water. In addition, the photoluminescence quantum yields (PL QYs) increase for the CsPbCl3and CsPbBr3NCs after shelling because of the type I band alignment of the core/shell materials, while enhanced charge transport properties obtained from CsPbI3/Cs2SnI6core/shell NCs are due to the efficient charge separation in the type II core/shell band alignment.

     
    more » « less
  5. Mechanoluminescent (ML) materials are used for fabricating sensors and other devices such as artificial skin, colorful displays, and energy harvesting devices. However, a key challenge in developing ML-based sensors is the ability to effectively capture and efficiently transmit ML light from the sensing location. Here we report a flexible and sensitive thin film pressure sensor, created using a novel combination of ML material and perovskite. In this work, we adopted a simple lateral type design of a thin pressure sensor primarily consisting of (i) a sensing layer of copper-doped zinc sulfide (ZnS:Cu)/polydimethylsiloxane (PDMS) composite and (ii) a light absorbing layer of perovskite. The mixed halide perovskite, a light absorbing material, fully absorbs the green light emitted from ZnS:Cu. The sensor demonstrated consistent signal output under the mechanical bending test. A thin encapsulation layer of PMMA on the perovskite layer prevents moisture inclusion. This innovative technique of utilizing integrated thin perovskite to efficiently harvest ML light has the potential to open up new avenues for advanced research in ML-perovskite-based sensor systems. 
    more » « less