skip to main content


Title: Stable genetic structure and connectivity in pollution-adapted and nearby pollution-sensitive populations of Fundulus heteroclitus
Populations of the non-migratory estuarine fish Fundulus heteroclitus inhabiting the heavily polluted New Bedford Harbour (NBH) estuary have shown inherited tolerance to local pollutants introduced to their habitats in the past 100 years. Here we examine two questions: (i) Is there pollution-driven selection on the mitochondrial genome across a fine geographical scale? and (ii) What is the pattern of migration among sites spanning a strong pollution gradient? Whole mitochondrial genomes were analysed for 133 F. heteroclitus from seven nearby collection sites: four sites along the NBH pollution cline (approx. 5 km distance), which had pollution-adapted fish, as well as one site adjacent to the pollution cline and two relatively unpolluted sites about 30 km away, which had pollution-sensitive fish. Additionally, we used microsatellite analyses to quantify genetic variation over three F. heteroclitus generations in both pollution-adapted and sensitive individuals collected from two sites at two different time points (1999/2000 and 2007/2008). Our results show no evidence for a selective sweep of mtDNA in the polluted sites. Moreover, mtDNA analyses revealed that both pollution-adapted and sensitive populations harbour similar levels of genetic diversity. We observed a high level of non-synonymous mutations in the most polluted site. This is probably associated with a reduction in N e and concomitant weakening of purifying selection, a demographic expansion following a pollution-related bottleneck or increased mutation rates. Our demographic analyses suggest that isolation by distance influences the distribution of mtDNA genetic variation between the pollution cline and the clean populations at broad spatial scales. At finer scales, population structure is patchy, and neither spatial distance, pollution concentration or pollution tolerance is a good predictor of mtDNA variation. Lastly, microsatellite analyses revealed stable population structure over the last decade.  more » « less
Award ID(s):
1754437 1147042
NSF-PAR ID:
10465003
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Royal Society Open Science
Volume:
5
Issue:
5
ISSN:
2054-5703
Page Range / eLocation ID:
171532
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background The teleost fish Fundulus heteroclitus inhabit estuaries heavily polluted with persistent and bioaccumulative chemicals. While embryos of parents from polluted sites are remarkably resistant to toxic sediment and develop normally, embryos of parents from relatively clean estuaries, when treated with polluted sediment extracts, are developmentally delayed, displaying deformities characteristic of pollution-induced embryotoxicity. To gain insight into parental effects on sensitive and resistant phenotypes during late organogenesis, we established sensitive, resistant, and crossed embryo families using five female and five male parents from relatively clean and predominantly PAH-polluted estuaries each, measured heart rates, and quantified individual embryo expression of 179 metabolic genes. Results Pollution-induced embryotoxicity manifested as morphological deformities, significant developmental delays, and altered cardiac physiology was evident among sensitive embryos resulting from crosses between females and males from relatively clean estuaries. Significantly different heart rates among several geographically unrelated populations of sensitive, resistant, and crossed embryo families during late organogenesis and pre-hatching suggest site-specific adaptive cardiac physiology phenotypes relative to pollution exposure. Metabolic gene expression patterns (32 genes, 17.9%, at p < 0.05; 11 genes, 6.1%, at p < 0.01) among the embryo families indicate maternal pollutant deposition in the eggs and parental effects on gene expression and metabolic alterations. Conclusion Heart rate differences among sensitive, resistant, and crossed embryos is a reliable phenotype for further explorations of adaptive mechanisms. While metabolic gene expression patterns among embryo families are suggestive of parental effects on several differentially expressed genes, a definitive adaptive signature and metabolic cost of resistant phenotypes is unclear and shows unexpected sensitive-resistant crossed embryo expression profiles. Our study highlights physiological and metabolic gene expression differences during a critical embryonic stage among pollution sensitive, resistant, and crossed embryo families, which may contribute to underlying resistance mechanisms observed in natural F. heteroclitus populations living in heavily contaminated estuaries. 
    more » « less
  2. Cao, Yi (Ed.)
    Polycyclic aromatic hydrocarbons (PAHs) are among the most widespread natural and anthropogenic pollutants, and some PAHs are proven developmental toxicants. We chemically characterized clean and heavily polluted sites and exposed fish embryos to PAH polluted sediment extracts during four critical developmental stages. Embryos were collected from Fundulus heteroclitus populations inhabiting the clean and heavily polluted Superfund estuary. Embryos of parents from the clean sites are sensitive to PAH pollutants while those of parents from the heavily polluted site are resistant. Chemical analysis of embryos suggests PAH accumulation and pollution-induced toxicity among sensitive embryos during development that ultimately kills all sensitive embryos before hatching, while remarkably, the resistant embryos develop normally. The adverse effects on sensitive embryos are manifested as developmental delays, reduced heart rates, and severe heart, liver, and kidney morphological abnormalities. Gene expression analysis of early somitogenesis, heartbeat initiation, late organogenesis, and pre-hatching developmental stages reveals genes whose expression significantly differs between sensitive and resistant embryo populations and helps to explain mechanisms of sensitivity and resistance to polluted environments during vertebrate animal development. 
    more » « less
  3. By investigating evolutionary adaptations that change physiological functions, we can enhance our understanding of how organisms work, the importance of physiological traits, and the genes that influence these traits. This approach of investigating the evolution of physiological adaptation has been used with the teleost fish Fundulus heteroclitus and has produced insights into (i) how protein polymorphisms enhance swimming and development; (ii) the role of equilibrium enzymes in modulating metabolic flux; (iii) how variation in DNA sequences and mRNA expression patterns mitigate changes in temperature, pollution, and salinity; and (iv) the importance of nuclear-mitochondrial genome interactions for energy metabolism. Fundulus heteroclitus provides so many examples of adaptive evolution because their local population sizes are large, they have significant standing genetic variation, and they experience large ranges of environmental conditions that enhance the likelihood that adaptive evolution will occur. Thus, F. heteroclitus research takes advantage of evolutionary changes associated with exposure to diverse environments, both across the North American Atlantic coast and within local habitats, to contrast neutral versus adaptive divergence. Based on evolutionary analyses contrasting neutral and adaptive evolution in F. heteroclitus populations, we conclude that adaptive evolution can occur readily and rapidly, at least in part because it depends on large amounts of standing genetic variation among many genes that can alter physiological traits. These observations of polygenic adaptation enhance our understanding of how evolution and physiological adaptation progresses, thus informing both biological and medical scientists about genotype-phenotype relationships 
    more » « less
  4. null (Ed.)
    Radical environmental change that provokes population decline can impose constraints on the sources of genetic variation that may enable evolutionary rescue. Adaptive toxicant resistance has rapidly evolved in Gulf killifish ( Fundulus grandis ) that occupy polluted habitats. We show that resistance scales with pollution level and negatively correlates with inducibility of aryl hydrocarbon receptor (AHR) signaling. Loci with the strongest signatures of recent selection harbor genes regulating AHR signaling. Two of these loci introgressed recently (18 to 34 generations ago) from Atlantic killifish ( F. heteroclitus ). One introgressed locus contains a deletion in AHR that confers a large adaptive advantage [selection coefficient ( s ) = 0.8]. Given the limited migration of killifish, recent adaptive introgression was likely mediated by human-assisted transport. We suggest that interspecies connectivity may be an important source of adaptive variation during extreme environmental change. 
    more » « less
  5. Abstract

    Steep genetic clines resulting from recent secondary contact between previously isolated taxa can either gradually erode over time or be stabilized by factors such as ecological selection or selection against hybrids. We used patterns of variation in 30 nuclear and two mitochondrialSNPs to examine the factors that could be involved in stabilizing clines across a hybrid zone between two subspecies of the Atlantic killifish,Fundulus heteroclitus. Increased heterozygote deficit and cytonuclear disequilibrium in populations near the center of the mtDNAcline suggest that some form of reproductive isolation such as assortative mating or selection against hybrids may be acting in this hybrid zone. However, only a small number of loci exhibited these signatures, suggesting locus‐specific, rather than genomewide, factors. Fourteen of the 32 loci surveyed had cline widths inconsistent with neutral expectations, with twoSNPs in the mitochondrial genome exhibiting the steepest clines. Seven of the 12 putatively non‐neutral nuclear clines were forSNPs in genes related to oxidative metabolism. Among these putatively non‐neutral nuclear clines,SNPs in two nuclear‐encoded mitochondrial genes (SLC25A3 andHDDC2), as well asSNPs in the myoglobin, 40S ribosomal protein S17, and actin‐bindingLIMprotein genes, had clines that were coincident and concordant with the mitochondrial clines. When hybrid index was calculated using this subset of loci, the frequency distribution of hybrid indices for a population located at the mtDNAcline center was non‐unimodal, suggesting selection against advanced‐generation hybrids, possibly due to effects on processes involved in oxidative metabolism.

     
    more » « less