skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of In-home Robotic Companion Pet Use in South Korea and the United States: A Case Study
This paper presents an intensive case study of 10 participants in the US and South Korea interacting with a robotic companion pet in their own homes over the course of several weeks. Participants were tracked every second of every day during that period of time. The fundamental goal was to determine whether there were significant differences in the types of interactions that occurred across those cultural settings, and how those differences affected modeling of the human-robot interactions. We collected a mix of quantitative and qualitative data through sensors onboard the robot, ecological momentary assessment (EMA), and participant interviews. Results showed that there were significant differences in how participants in Korea interacted with the robotic pet relative to participants in the US, which impacted machine learning and deep learning models of the interactions. Moreover, those differences were connected to differences in participant perceptions of the robot based on the qualitative interviews. The work here suggests that it may be necessary to develop culturally-specific models and/or sensor suites for human-robot interaction (HRI) in the future, and that simply adapting the same robot's behavior through cultural homophily may be insufficient.  more » « less
Award ID(s):
1900683
PAR ID:
10465007
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob)
Page Range / eLocation ID:
01 to 07
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social-educational robotics, such as NAO humanoid robots with social, anthropomorphic, humanlike features, are tools for learning, education, and addressing developmental disorders (e.g., autism spectrum disorder or ASD) through social and collaborative robotic interactions and interventions. There are significant gaps at the intersection of social robotics and autism research dealing with how robotic technology helps ASD individuals with their social, emotional, and communication needs, and supports teachers who engage with ASD students. This research aims to (a) obtain new scientific knowledge on social-educational robotics by exploring the usage of social robots (especially humanoids) and robotic interventions with ASD students at high schools through an ASD student–teacher co-working with social robot–social robotic interactions triad framework; (b) utilize Business Model Canvas (BMC) methodology for robot design and curriculum development targeted at ASD students; and (c) connect interdisciplinary areas of consumer behavior research, social robotics, and human-robot interaction using customer discovery interviews for bridging the gap between academic research on social robotics on the one hand, and industry development and customers on the other. The customer discovery process in this research results in eight core research propositions delineating the contexts that enable a higher quality learning environment corresponding with ASD students’ learning requirements through the use of social robots and preparing them for future learning and workforce environments. 
    more » « less
  2. This article examines how people respond to robot-administered verbal and physical punishments. Human participants were tasked with sorting colored chips under time pressure and were punished by a robot when they made mistakes, such as inaccurate sorting or sorting too slowly. Participants were either punished verbally by being told to stop sorting for a fixed time, or physically, by restraining their ability to sort with an in-house crafted robotic exoskeleton. Either a human experimenter or the robot exoskeleton administered punishments, with participant task performance and subjective perceptions of their interaction with the robot recorded. The results indicate that participants made more mistakes on the task when under the threat of robot-administered punishment. Participants also tended to comply with robot-administered punishments at a lesser rate than human-administered punishments, which suggests that humans may not afford a robot the social authority to administer punishments. This study also contributes to our understanding of compliance with a robot and whether people accept a robot’s authority to punish. The results may influence the design of robots placed in authoritative roles and promote discussion of the ethical ramifications of robot-administered punishment. 
    more » « less
  3. Incidental human‐robot encounters are becoming more common as robotic technologies proliferate, but there is little scientific understanding of human experience and reactions during these encounters. To contribute towards addressing this gap, this study applies Grounded Theory methodologies to study human reactions in Human‐Robot Encounters with an autonomous quadruped robot. Based upon observation and interviews, we find that participants' reactions to the robot can be explained by their attitudes of familiarity, certainty, and confidence during their encounter and by their understanding of the robot's capabilities and role. Participants differed in how and whether they utilized opportunities to resolve their unfamiliarity, uncertainty, or lack of confidence, shedding light on the dynamics and experiential characteristics of Human‐Robot Encounters. We provide an emerging theory that can be used to unravel the complexity of the field as well as assist hypothesis generation in future research in designing and deploying mobile autonomous service robots. 
    more » « less
  4. Nonverbal interactions are a key component of human communication. Since robots have become significant by trying to get close to human beings, it is important that they follow social rules governing the use of space. Prior research has conceptualized personal space as physical zones which are based on static distances. This work examined how preferred interaction distance can change given different interaction scenarios. We conducted a user study using three different robot heights. We also examined the difference in preferred interaction distance when a robot approaches a human and, conversely, when a human approaches a robot. Factors included in quantitative analysis are the participants' gender, robot's height, and method of approach. Subjective measures included human comfort and perceived safety. The results obtained through this study shows that robot height, participant gender and method of approach were significant factors influencing measured proxemic zones and accordingly participant comfort. Subjective data showed that experiment respondents regarded robots in a more favorable light following their participation in this study. Furthermore, the NAO was perceived most positively by respondents according to various metrics and the PR2 Tall, most negatively. 
    more » « less
  5. In peer tutoring, the learner is taught by a colleague rather than by a traditional tutor. This strategy has been shown to be effective in human tutoring, where students have higher learning gains when taught by a peer instead of a traditional tutor. Similar results have been shown in child-robot interactions studies, where a peer robot was more effective than a tutor robot at teaching children. In this work, we compare skill increase and perception of a peer robot to a tutor robot when teaching adults. We designed a system in which a robot provides personalized help to adults in electronic circuit construction. We compare the number of learned skills and preferences of a peer robot to a tutor robot. Participants in both conditions improved their circuit skills after interacting with the robot. There were no significant differences in number of skills learned between conditions. However, participants with low prior domain knowledge learned significantly more with a peer robot than a tutor robot. Furthermore, the peer robot was perceived as friendlier, more social, smarter, and more respectful than the tutor robot, regardless of initial skill level. 
    more » « less