skip to main content


Title: Accelerating China’s power sector decarbonization can save lives: integrating public health goals into power sector planning decisions
Abstract

China, the world’s largest greenhouse gas emitter in 2022, aims to achieve carbon neutrality by 2060. The power sector will play a major role in this decarbonization process due to its current reliance on coal. Prior studies have quantified air quality co-benefits from decarbonization or investigated pathways to eliminate greenhouse gas emissions from the power sector. However, few have jointly assessed the potential impacts of accelerating decarbonization on electric power systems and public health. Additionally, most analyses have treated air quality improvements as co-benefits of decarbonization, rather than a target during decarbonization. Here, we explore future energy technology pathways in China under accelerated decarbonization scenarios with a power system planning model that integrates carbon, pollutant, and health impacts. We integrate the health effects of power plant emissions into the power system decision-making process, quantifying the public health impacts of decarbonization under each scenario. We find that compared with a reference decarbonization pathway, a stricter cap (20% lower emissions than the reference pathway in each period) on carbon emissions would yield significant co-benefits to public health, leading to a 22% reduction in power sector health impacts. Although extra capital investment is required to achieve this low emission target, the value of climate and health benefits would exceed the additional costs, leading to $824 billion net benefits from 2021 to 2050. Another accelerated decarbonization pathway that achieves zero emissions five years earlier than the reference case would result in lower net benefits due to higher capital costs during earlier decarbonization periods. Treating air pollution impacts as a target in decarbonization can further mitigate both CO2emissions and negative health effects. Alternative low-cost solutions also show that small variations in system costs can result in significantly different future energy portfolios, suggesting that diverse decarbonization pathways are viable.

 
more » « less
Award ID(s):
1934276
NSF-PAR ID:
10465022
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
18
Issue:
10
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 104023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Air quality associated public health co-benefit may emerge from climate and energy policies aimed at reducing greenhouse gas (GHG) emissions. However, the distribution of these co-benefits has not been carefully studied, despite the opportunity to tailor mitigation efforts so they achieve maximum benefits within socially and economically disadvantaged communities (DACs). Here, we quantify such health co-benefits from different long-term, low-carbon scenarios in California and their distribution in the context of social vulnerability. The magnitude and distribution of health benefits, including within impacted communities, is found to varies among scenarios which reduce economy wide GHG emissions by 80% in 2050 depending on the technology- and fuel-switching decisions in individual end-use sectors. The building electrification focused decarbonization strategy achieves ~15% greater total health benefits than the truck electrification focused strategy which uses renewable fuels to meet building demands. Conversely, the enhanced electrification of the truck sector is shown to benefit DACs more effectively. Such tradeoffs highlight the importance of considering environmental justice implications in the development of climate mitigation planning. 
    more » « less
  2. Abstract

    Electric vehicle (EV) adoption promises potential air pollutant and greenhouse gas (GHG) reduction co‐benefits. As such, China has aggressively incentivized EV adoption, however much remains unknown with regard to EVs’ mitigation potential, including optimal vehicle type prioritization, power generation contingencies, effects of Clean Air regulations, and the ability of EVs to reduce acute impacts of extreme air quality events. Here, we present a suite of scenarios with a chemistry transport model that assess the potential co‐benefits of EVs during an extreme winter air quality event. We find that regardless of power generation source, heavy‐duty vehicle (HDV) electrification consistently improves air quality in terms of NO2and fine particulate matter (PM2.5), potentially avoiding 562 deaths due to acute pollutant exposure during the infamous January 2013 pollution episode (∼1% of total premature mortality). However, HDV electrification does not reduce GHG emissions without enhanced emission‐free electricity generation. In contrast, due to differing emission profiles, light‐duty vehicle (LDV) electrification in China consistently reduces GHG emissions (∼2 Mt CO2), but results in fewer air quality and human health improvements (145 avoided deaths). The calculated economic impacts for human health endpoints and CO2reductions for LDV electrification are nearly double those of HDV electrification in present‐day (155M vs. 87M US$), but are within ∼25% when enhanced emission‐free generation is used to power them. Overall, we find only a modest benefit for EVs to ameliorate severe wintertime pollution events, and that continued emission reductions in the power generation sector will have the greatest human health and economic benefits.

     
    more » « less
  3. In this work, we compare the air quality benefits of a variety of future policy scenarios geared towards controlling EGU (electricity generating units) emissions between the present-day conditions and 2050. While these policies are motivated by reducing CO2 emissions, they also yield significant co-benefits for criteria pollutants, such as ozone and PM2.5. An integrated set of clean energy policies were examined to assess the time-varying costs and benefits of a range of decarbonization strategies, including business as usual and the Affordable Clean Energy plan, with a primary focus on others that look to achieve very low, if not zero, CO2 emissions from the EGU sector by 2050. Benefits assessed include mitigation of greenhouse gas emissions as well as air quality co-benefits. In this introductory work, we describe the potential air quality changes from various clean air policies, to set the stage for upcoming work looking at health and monetized benefits. Emission changes for key pollutants are forecast using the Integrated Planning Model (IPM), which are then transformed into emission inputs for the Community Multiscale Air Quality Model (CMAQ). For all primary scenarios considered that achieve large greenhouse gas decreases, significant reductions in ozone and PM are realized, mainly in the eastern US, and all policies produce air quality benefits. 
    more » « less
  4. Abstract Decarbonization is an urgent global policy priority, with increasing movement towards zero-carbon targets in the United States and elsewhere. Given the joint decarbonization strategies of electrifying fossil fuel-based energy uses and decarbonizing the electricity supply, understanding how electricity emissions might change over time is of particular value in evaluating policy sequencing strategies. For example, is the electricity system likely to decarbonize quickly enough to motivate electrification even on relatively carbon-intensive systems? Although electricity sector decarbonization has been widely studied, limited research has focused on evaluating emissions factors at the utility level, which is where the impact of electrification strategies is operationalized. Given the existing fleet of electricity generators, ownership structures, and generator lifespans, committed emissions can be modeled at the utility level. Generator lifespans are modeled using capacity-weighted mean age-on-retirement for similar units over the last two decades, a simple empirical outcome variable reflecting the length of time the unit might reasonably be expected to operate. By also evaluating generators in wholesale power markets and designing scenarios for new-build generation, first-order annual average emissions factors can be projected forward on a multidecadal time scale at the utility level. This letter presents a new model of utility-specific annual average emissions projections (greenhouse gases and air pollutants) through 2050 for the United States, using a 2019 base year to define existing asset characteristics. Enabling the creation and evaluation of scenario-based projections for dynamic environmental intensity metrics in a decarbonizing electricity sector can inform life cycle and other environmental assessment studies that evaluate impact over time, in addition to highlighting particular opportunities and risks associated with the timing and location of long-lived capital investments as the fossil fuel electricity generator fleet turns over. Model results can also be used to contextualize utilities’ decarbonization commitments and timelines against their asset bases. 
    more » « less
  5. Abstract

    India’s coal-heavy electricity system is the world’s third largest and a major emitter of air pollution and greenhouse gas emissions. Consequently, it remains a focus of decarbonization and air pollution control policy. Considerable heterogeneity exists between states in India in terms of electricity demand, generation fuel mix, and emissions. However, no analysis has disentangled the expected, state-level spatial differences and interactions in air pollution mortality under current and future power sector policies in India. We use a reduced-complexity air quality model to evaluate annual PM2.5mortalities associated with electricity production and consumption in each state in India. Furthermore, we test emissions control, carbon tax, and market integration policies to understand how changes in power sector operations affect ambient PM2.5concentrations and associated mortality. We find poorer, coal-dependent states in eastern India disproportionately face the burden of PM2.5mortality from electricity in India by importing deaths. Wealthier, high renewable energy states in western and southern India meanwhile face a lower burden by exporting deaths. This suggests that as these states have adopted more renewable generation, they have shifted their coal generation and associated PM2.5mortality to eastern areas. We also find widespread sulfur emissions control decreases mortality by about 50%. Likewise, increasing carbon taxes in the short term reduces annual mortality by up to 9%. Market reform where generators between states pool to meet demand reduces annual mortality by up to 8%. As India looks to increase renewable energy, implement emissions control regulations, establish a carbon trading market, and move towards further power market integration, our results provide greater spatial detail for a federally structured Indian electricity system.

     
    more » « less