skip to main content

Title: U.S. household food waste tracking data in support of Li et al. 2023
These data were used to generate the results in the article “Household Food Waste Trending Upwards in the United States: Insights from a National Tracking Survey,” by Ran Li, Yiheng Shu, Kathryn E. Bender & Brian E. Roe, which has been accepted for publication in the Journal of the Agricultural and Applied Economics Association (doi – pending). The Stata code used to generate results is available from the authors upon request. U.S. residents who participate in consumer panels managed by a commercial vendor were invited by email or text message to participate in a two-part online survey during four waves of data collection: February and March of 2021 (Feb 21 wave, 425 initiated, 361 completed), July and August of 2021 (Jul 21 wave, 606 initiated, 419 completed), December of 2021 and January of 2022 (Dec 21 wave, 760 initiated, 610 completed), and February, March and April of 2022 (Feb 22 wave, 607 initiated, 587 completed). We are not able to determine if any respondents participated in multiple waves, i.e., if any of the observations are repeat participants. All participants provided informed consent and received compensation. Inclusion criteria included age 18 years or older and performance of at least half of the household food preparation. No data was collected during major holidays, i.e., the weeks of the Fourth of July (Independence Day), Christmas, or New Years. Recruitment quotas were implemented to ensure sufficient representation by geographical region, race, and age group. Post-hoc sample weights were constructed to reflect population characteristics on age, income and household size. The protocol was approved by the local Internal Review Board. The approach begins with participants completing an initial survey that ends with an announcement that a follow-up survey will arrive in about one week, and that for the next 7 days, participants should pay close attention to the amounts of different foods their household throws away, feeds to animals or composts because the food is past date, spoiled or no longer wanted for other reasons. They are told to exclude items they would normally not eat, such as bones, pits, and shells. Approximately 7 days later they received the follow-up survey, which elicited the amount of waste in up to 24 categories of food and included other questions (see supplemental materials for core survey questions). Waste amounts in each category are reported by selecting from one of several ranges of possible amounts. The gram weight for categories with volumetric ranges (e.g., listed in cups) were derived by assigning an appropriate mass to the midpoint of the selected range consistent with the food category. For the categories with highly variable weight per volume (e.g., a cup of raw asparagus weighs about 7 times more than a cup of raw chopped arugula), we use the profile of items most consumed in the United States to determine the appropriate gram weight. For display purposes, the 24 categories are consolidated into 8 more general categories. Total weekly household food waste is calculated by summing up reported gram amounts across all categories. We divide this total by the number of household members to generate the per person weekly food waste amount.  more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Environmental Data Initiative
Date Published:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The COVID-19 pandemic has dramatically altered family life in the United States. Over the long duration of the pandemic, parents had to adapt to shifting work conditions, virtual schooling, the closure of daycare facilities, and the stress of not only managing households without domestic and care supports but also worrying that family members may contract the novel coronavirus. Reports early in the pandemic suggest that these burdens have fallen disproportionately on mothers, creating concerns about the long-term implications of the pandemic for gender inequality and mothers’ well-being. Nevertheless, less is known about how parents’ engagement in domestic labor and paid work has changed throughout the pandemic, what factors may be driving these changes, and what the long-term consequences of the pandemic may be for the gendered division of labor and gender inequality more generally.

    The Study on U.S. Parents’ Divisions of Labor During COVID-19 (SPDLC) collects longitudinal survey data from partnered U.S. parents that can be used to assess changes in parents’ divisions of domestic labor, divisions of paid labor, and well-being throughout and after the COVID-19 pandemic. The goal of SPDLC is to understand both the short- and long-term impacts of the pandemic for the gendered division of labor, work-family issues, and broader patterns of gender inequality.

    Survey data for this study is collected using Prolifc (, an opt-in online platform designed to facilitate scientific research. The sample is comprised U.S. adults who were residing with a romantic partner and at least one biological child (at the time of entry into the study). In each survey, parents answer questions about both themselves and their partners. Wave 1 of SPDLC was conducted in April 2020, and parents who participated in Wave 1 were asked about their division of labor both prior to (i.e., early March 2020) and one month after the pandemic began. Wave 2 of SPDLC was collected in November 2020. Parents who participated in Wave 1 were invited to participate again in Wave 2, and a new cohort of parents was also recruited to participate in the Wave 2 survey. Wave 3 of SPDLC was collected in October 2021. Parents who participated in either of the first two waves were invited to participate again in Wave 3, and another new cohort of parents was also recruited to participate in the Wave 3 survey. This research design (follow-up survey of panelists and new cross-section of parents at each wave) will continue through 2024, culminating in six waves of data spanning the period from March 2020 through October 2024. An estimated total of approximately 6,500 parents will be surveyed at least once throughout the duration of the study.

    SPDLC data will be released to the public two years after data is collected; Waves 1 and 2 are currently publicly available. Wave 3 will be publicly available in October 2023, with subsequent waves becoming available yearly. Data will be available to download in both SPSS (.sav) and Stata (.dta) formats, and the following data files will be available: (1) a data file for each individual wave, which contains responses from all participants in that wave of data collection, (2) a longitudinal panel data file, which contains longitudinal follow-up data from all available waves, and (3) a repeated cross-section data file, which contains the repeated cross-section data (from new respondents at each wave) from all available waves. Codebooks for each survey wave and a detailed user guide describing the data are also available. Response Rates: Of the 1,157 parents who participated in Wave 1, 828 (72%) also participated in the Wave 2 study. Presence of Common Scales: The following established scales are included in the survey:
    • Self-Efficacy, adapted from Pearlin's mastery scale (Pearlin et al., 1981) and the Rosenberg self-esteem scale (Rosenberg, 2015) and taken from the American Changing Lives Survey
    • Communication with Partner, taken from the Marriage and Relationship Survey (Lichter & Carmalt, 2009)
    • Gender Attitudes, taken from the National Survey of Families and Households (Sweet & Bumpass, 1996)
    • Depressive Symptoms (CES-D-10)
    • Stress, measured using Cohen's Perceived Stress Scale (Cohen, Kamarck, & Mermelstein, 1983)
    Full details about these scales and all other items included in the survey can be found in the user guide and codebook
    The second wave of the SPDLC was fielded in November 2020 in two stages. In the first stage, all parents who participated in W1 of the SPDLC and who continued to reside in the United States were re-contacted and asked to participate in a follow-up survey. The W2 survey was posted on Prolific, and messages were sent via Prolific’s messaging system to all previous participants. Multiple follow-up messages were sent in an attempt to increase response rates to the follow-up survey. Of the 1,157 respondents who completed the W1 survey, 873 at least started the W2 survey. Data quality checks were employed in line with best practices for online surveys (e.g., removing respondents who did not complete most of the survey or who did not pass the attention filters). After data quality checks, 5.2% of respondents were removed from the sample, resulting in a final sample size of 828 parents (a response rate of 72%).

    In the second stage, a new sample of parents was recruited. New parents had to meet the same sampling criteria as in W1 (be at least 18 years old, reside in the United States, reside with a romantic partner, and be a parent living with at least one biological child). Also similar to the W1 procedures, we oversampled men, Black individuals, individuals who did not complete college, and individuals who identified as politically conservative to increase sample diversity. A total of 1,207 parents participated in the W2 survey. Data quality checks led to the removal of 5.7% of the respondents, resulting in a final sample size of new respondents at Wave 2 of 1,138 parents.

    In both stages, participants were informed that the survey would take approximately 20 minutes to complete. All panelists were provided monetary compensation in line with Prolific’s compensation guidelines, which require that all participants earn above minimum wage for their time participating in studies.
    To be included in SPDLC, respondents had to meet the following sampling criteria at the time they enter the study: (a) be at least 18 years old, (b) reside in the United States, (c) reside with a romantic partner (i.e., be married or cohabiting), and (d) be a parent living with at least one biological child. Follow-up respondents must be at least 18 years old and reside in the United States, but may experience changes in relationship and resident parent statuses. Smallest Geographic Unit: U.S. State

    This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit In accordance with this license, all users of these data must give appropriate credit to the authors in any papers, presentations, books, or other works that use the data. A suggested citation to provide attribution for these data is included below:            

    Carlson, Daniel L. and Richard J. Petts. 2022. Study on U.S. Parents’ Divisions of Labor During COVID-19 User Guide: Waves 1-2.  

    To help provide estimates that are more representative of U.S. partnered parents, the SPDLC includes sampling weights. Weights can be included in statistical analyses to make estimates from the SPDLC sample representative of U.S. parents who reside with a romantic partner (married or cohabiting) and a child aged 18 or younger based on age, race/ethnicity, and gender. National estimates for the age, racial/ethnic, and gender profile of U.S. partnered parents were obtained using data from the 2020 Current Population Survey (CPS). Weights were calculated using an iterative raking method, such that the full sample in each data file matches the nationally representative CPS data in regard to the gender, age, and racial/ethnic distributions within the data. This variable is labeled CPSweightW2 in the Wave 2 dataset, and CPSweightLW2 in the longitudinal dataset (which includes Waves 1 and 2). There is not a weight variable included in the W1-W2 repeated cross-section data file.
    more » « less
  2. Abstract Aims

    To examine changes in drinking behavior among United States (US) adults between March 10 and July 21, 2020, a critical period during the COVID‐19 pandemic.


    Longitudinal, internet‐based panel survey.


    The Understanding America Study (UAS), a nationally representative panel of US adults age 18 or older.


    A total of 4298 US adults who reported alcohol use.


    Changes in number of reported drinking days from March 11, 2020 through July 21, 2020 in the overall sample and stratified by sex, age, race/ethnicity, household structure, poverty status, and census region.


    Compared with March 11, the number of drinking days per week was significantly higher on April 1 by an average of 0.36 days (95% CI = 0.30, 0.43), on May 1 by an average of 0.55 days (95% CI = 0.47, 0.63), on June 1 by an average of 0.41 days (95% CI = 0.33, 0.49), and on July 1 by an average of 0.39 days (95% CI = 0.31, 0.48). Males, White participants, and older adults reported sustained increases in drinking days, whereas female participants and individuals living under the federal poverty line had attenuated drinking days in the latter part of the study period.


    Between March and mid‐July 2020, adults in the United States reported increases in the number of drinking days, with sustained increases observed among males, White participants, and older adults.

    more » « less
  3. Background:

    Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.


    We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance.


    Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models.


    Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.


    AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 ( within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).

    more » « less
  4. Importance

    Persistence of COVID-19 symptoms beyond 2 months, or long COVID, is increasingly recognized as a common sequela of acute infection.


    To estimate the prevalence of and sociodemographic factors associated with long COVID and to identify whether the predominant variant at the time of infection and prior vaccination status are associated with differential risk.

    Design, Setting, and Participants

    This cross-sectional study comprised 8 waves of a nonprobability internet survey conducted between February 5, 2021, and July 6, 2022, among individuals aged 18 years or older, inclusive of all 50 states and the District of Columbia.

    Main Outcomes and Measures

    Long COVID, defined as reporting continued COVID-19 symptoms beyond 2 months after the initial month of symptoms, among individuals with self-reported positive results of a polymerase chain reaction test or antigen test.


    The 16 091 survey respondents reporting test-confirmed COVID-19 illness at least 2 months prior had a mean age of 40.5 (15.2) years; 10 075 (62.6%) were women, and 6016 (37.4%) were men; 817 (5.1%) were Asian, 1826 (11.3%) were Black, 1546 (9.6%) were Hispanic, and 11 425 (71.0%) were White. From this cohort, 2359 individuals (14.7%) reported continued COVID-19 symptoms more than 2 months after acute illness. Reweighted to reflect national sociodemographic distributions, these individuals represented 13.9% of those who had tested positive for COVID-19, or 1.7% of US adults. In logistic regression models, older age per decade above 40 years (adjusted odds ratio [OR], 1.15; 95% CI, 1.12-1.19) and female gender (adjusted OR, 1.91; 95% CI, 1.73-2.13) were associated with greater risk of persistence of long COVID; individuals with a graduate education vs high school or less (adjusted OR, 0.67; 95% CI, 0.56-0.79) and urban vs rural residence (adjusted OR, 0.74; 95% CI, 0.64-0.86) were less likely to report persistence of long COVID. Compared with ancestral COVID-19, infection during periods when the Epsilon variant (OR, 0.81; 95% CI, 0.69-0.95) or the Omicron variant (OR, 0.77; 95% CI, 0.64-0.92) predominated in the US was associated with diminished likelihood of long COVID. Completion of the primary vaccine series prior to acute illness was associated with diminished risk for long COVID (OR, 0.72; 95% CI, 0.60-0.86).

    Conclusions and Relevance

    This study suggests that long COVID is prevalent and associated with female gender and older age, while risk may be diminished by completion of primary vaccination series prior to infection.

    more » « less
  5. Importance

    Little is known about the functional correlates of post–COVID-19 condition (PCC), also known as long COVID, particularly the relevance of neurocognitive symptoms.


    To characterize prevalence of unemployment among individuals who did, or did not, develop PCC after acute infection.

    Design, Setting, and Participants

    This survey study used data from 8 waves of a 50-state US nonprobability internet population-based survey of respondents aged 18 to 69 years conducted between February 2021 and July 2022.

    Main Outcomes and Measures

    The primary outcomes were self-reported current employment status and the presence of PCC, defined as report of continued symptoms at least 2 months beyond initial month of symptoms confirmed by a positive COVID-19 test.


    The cohort included 15 308 survey respondents with test-confirmed COVID-19 at least 2 months prior, of whom 2236 (14.6%) reported PCC symptoms, including 1027 of 2236 (45.9%) reporting either brain fog or impaired memory. The mean (SD) age was 38.8 (13.5) years; 9679 respondents (63.2%) identified as women and 10 720 (70.0%) were White. Overall, 1418 of 15 308 respondents (9.3%) reported being unemployed, including 276 of 2236 (12.3%) of those with PCC and 1142 of 13 071 (8.7%) of those without PCC; 8229 respondents (53.8%) worked full-time, including 1017 (45.5%) of those with PCC and 7212 (55.2%) without PCC. In survey-weighted regression models excluding retired respondents, the presence of PCC was associated with a lower likelihood of working full-time (odds ratio [OR], 0.71 [95% CI, 0.63-0.80]; adjusted OR, 0.84 [95% CI, 0.74-0.96]) and with a higher likelihood of being unemployed (OR, 1.45 [95% CI, 1.22-1.73]; adjusted OR, 1.23 [95% CI, 1.02-1.48]). The presence of any cognitive symptom was associated with lower likelihood of working full time (OR, 0.70 [95% CI, 0.56-0.88]; adjusted OR, 0.75 [95% CI, 0.59-0.84]).

    Conclusions and Relevance

    PCC was associated with a greater likelihood of unemployment and lesser likelihood of working full time in adjusted models. The presence of cognitive symptoms was associated with diminished likelihood of working full time. These results underscore the importance of developing strategies to treat and manage PCC symptoms.

    more » « less