skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metior: A Comprehensive Model to Evaluate Obfuscating Side-Channel Defense Schemes
Microarchitectural side-channels enable an attacker to exfiltrate information via the observable side-effects of a victim’s execution. Obfuscating mitigation schemes have recently gained in popularity for their appealing performance characteristics. These schemes, including randomized caches and DRAM traffic shapers, limit, but do not completely eliminate, side-channel leakage. An important (yet under-explored) research challenge is the quantitative study of the security effectiveness of these schemes, identifying whether these obfuscating schemes help increase the security level of a system, and if so, by how much. In this paper, we address this research challenge by presenting Metior, a comprehensive model to quantitatively evaluate the effectiveness of obfuscating side-channel mitigations. Metior offers a way to reason about the flow of information through obfuscating schemes. Metior builds upon existing information theoretic approaches, allowing for the comprehensive side-channel leakage evaluation of active attackers, real victim applications, and state-ofthe-art microarchitectural obfuscation schemes. We demonstrate the use of Metior in the concrete leakage evaluation of three microarchitectural obfuscation schemes (fully-associative random replacement caches, CEASER-S, and Camouflage), identifying unintuitive leakage behaviours across all three schemes.  more » « less
Award ID(s):
2217099 2046359
PAR ID:
10465223
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
49th Annual International Symposium on Computer Architecture
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cache side-channel attacks aim to breach the confidentiality of a computer system and extract sensitive secrets through CPU caches. In the past years, different types of side-channel attacks targeting a variety of cache architectures have been demonstrated. Meanwhile, different defense methods and systems have also been designed to mitigate these attacks. However, quantitatively evaluating the effectiveness of these attacks and defenses has been challenging. We propose a generic approach to evaluating cache side-channel attacks and defenses. Specifically, our method builds a deep neural network with its inputs as the adversary's observed information, and its outputs as the victim's execution traces. By training the neural network, the relationship between the inputs and outputs can be automatically discovered. As a result, the prediction accuracy of the neural network can serve as a metric to quantify how much information the adversary can obtain correctly, and how effective a defense solution is in reducing the information leakage under different attack scenarios. Our evaluation suggests that the proposed method can effectively evaluate different attacks and defenses. 
    more » « less
  2. null (Ed.)
    Lightweight authenticated ciphers are crucial in many resource-constrained applications, including hardware security. To protect Intellectual Property (IPs) from theft and reverse-engineering, multiple obfuscation methods have been developed. An essential component of such schemes is the need for secrecy and authenticity of the obfuscation keys. Such keys may need to be exchanged through the unprotected channels, and their recovery attempted using side-channel attacks. However, the use of the current AES-GCM standard to protected key exchange requires a substantial area and power overhead. NIST is currently coordinating a standardization process to select lightweight algorithms for resource-constrained applications. Although security against cryptanalysis is paramount, cost, performance, and resistance to side-channel attacks are among the most important selection criteria. Since the cost of protection against side-channel attacks is a function of the algorithm, quantifying this cost is necessary for estimating its cost and performance in real-world applications. In this work, we investigate side-channel resistant lightweight implementations of an authenticated cipher TinyJAMBU, one of ten finalists in the current NIST LWC standardization process. Our results demonstrate that these implementations achieve robust security against side-channel attacks while keeping the area and power consumption significantly lower than it is possible using the current standards. 
    more » « less
  3. Hardware security creates a hardware-based security foundation for secure and reliable operation of systems and applications used in our modern life. The presence of design for security, security assurance, and general security design life cycle practices in product life cycle of many large semiconductor design and manufacturing companies these days indicates that the importance of hardware security has been very well observed in industry. However, the high cost, time, and effort for building security into designs and assuring their security - due to using many manual processes - is still an important obstacle for economy of secure product development. This paper presents several promising directions for automation of design for security and security assurance practices to reduce the overall time and cost of secure product development. First, we present security verification challenges of SoCs, possible vulnerabilities that could be introduced inadvertently by tools mapping a design model in one level of abstraction to its lower level, and our solution to the problem by automatically mapping security properties from one level to its lower level incorporating techniques for extension and expansion of the properties. Then, we discuss the foundation necessary for further automation of formal security analysis of a design by incorporating threat model and common security vulnerabilities into an intermediate representation of a hardware model to be used to automatically determine if there is a chance for direct or indirect flow of information to compromise confidentiality or integrity of security assets. Finally, we discuss a pre-silicon-based framework for practical and time-and-cost effective power-side channel leakage analysis, root-causing the side-channel leakage by using the automatically generated leakage profile of circuit nodes, providing insight to mitigate the side-channel leakage by addressing the high leakage nodes, and assuring the effectiveness of the mitigation by reprofiling the leakage to prove its acceptable level of elimination. We hope that sharing these efforts and ideas with the security research community can accelerate the evolution of security-aware CAD tools targeted to design for security and security assurance to enrich the ecosystem to have tools from multiple vendors with more capabilities and higher performance. 
    more » « less
  4. In this work, we present the first database reconstruction attacks against response-hiding private range search schemes on encrypted databases of arbitrary dimensions. Falzon et al. (VLDB 2022) present a number of range-supporting schemes on arbitrary dimensions exhibiting different security and efficiency trade-offs. Additionally, they characterize a form of leakage, structure pattern leakage, also present in many one-dimensional schemes e.g., Demertzis et al. (SIGMOD 2016) and Faber et al. (ESORICS 2015). We present the first systematic study of this leakage and attack a broad collection of schemes, including schemes that allow the responses to contain false-positives (often considered the gold standard in security). We characterize the information theoretic limitations of a passive persistent adversary. Our work shows that for range queries, structure pattern leakage can be as vulnerable to attacks as access pattern leakage. We give a comprehensive evaluation of our attacks with a complexity analysis, a prototype implementation, and an experimental assessment on real-world datasets. 
    more » « less
  5. Architecture reverse engineering has become an emerging attack against deep neural network (DNN) implemen- tations. Several prior works have utilized side-channel leakage to recover the model architecture while the an DNN is executing on a hardware acceleration platform. In this work, we target an open- source deep-learning accelerator, Versatile Tensor Accelerator (VTA), and utilize electromagnetic (EM) side-channel leakage to comprehensively learn the association between DNN architecture configurations and EM emanations. We also consider the holistic system – including the low-level tensor program code of the VTA accelerator on a Xilinx FPGA, and explore the effect of such low- level configurations on the EM leakage. Our study demonstrates that both the optimization and configuration of tensor programs will affect the EM side-channel leakage. Gaining knowledge of the association between low-level tensor program and the EM emanations, we propose NNReArch, a lightweight tensor program scheduling framework against side- channel-based DNN model architecture reverse engineering. Specifically, NNReArch targets reshaping the EM traces of different DNN operators, through scheduling the tensor program execution of the DNN model so as to confuse the adversary. NNReArch is a comprehensive protection framework supporting two modes, a balanced mode that strikes a balance between the DNN model confidentiality and execution performance, and a secure mode where the most secure setting is chosen. We imple- ment and evaluate the proposed framework on the open-source VTA with state-of-the-art DNN architectures. The experimental results demonstrate that NNReArch can efficiently enhance the model architecture security with a small performance overhead. In addition, the proposed obfuscation technique makes reverse engineering of the DNN architecture significantly harder. 
    more » « less