Understanding how populations respond to increasingly variable conditions is a major objective for natural resource managers forecasting extinction risk. The lesson from current modelling is clear: increasing environmental variability increases population abundance variability. We show that this paradigm fails to describe a broad class of empirically observed dynamics, namely endogenously driven population cycles. In contrast to the dominant paradigm, these populations can exhibit reduced long-run population variance under increasing environmental variability. We provide evidence for a mechanistic explanation of this phenomenon that relies on how stochasticity interacts with long transient dynamics present in the deterministic cycling model. This interaction stands in contrast to the often assumed additivity of stochastic and deterministic drivers of population fluctuations. We show evidence for the phenomenon in two cyclical populations: flour beetles and Canadian lynx. We quantify the impact of the phenomenon with new theory that partitions the effects of nonlinear dynamics and stochastic variation on dynamical systems. In both empirical examples, the partitioning shows that the interaction between deterministic and stochastic dynamics reduces the variance in population size. Our results highlight that previous predictions about extinction under environmental variability may prove inadequate to understand the effects of climate change in some populations.
more »
« less
Irregular population cycles driven by environmental stochasticity and saddle crawlbys
Despite considerable study of population cycles, the striking variability of cycle periods in many cyclic populations has received relatively little attention. Mathematical models of cyclic population dynamics have historically exhibited much greater regularity in cycle periods than many real populations, even when accounting for environmental stochasticity. We contend, however, that the recent focus on understanding the impact of long, transient but recurrent epochs within population oscillations points the way to a previously unrecognized means by which environmental stochasticity can create cycle period variation. Specifically, consumer–resource cycles that bring the populations near a saddle point (a combination of population sizes toward which the populations tend, before eventually transitioning to substantially different levels) may be subject to a slow passage effect that has been dubbed a ‘saddle crawlby'. In this study, we illustrate how stochasticity that generates variability in how close predator and prey populations come to saddles can result in substantial variability in the durations of crawlbys and, as a result, in the periods of population cycles. Our work suggests a new mechanistic hypothesis to explain an important factor in the irregular timing of population cycles and provides a basis for understanding when environmental stochasticity is, and is not, expected to generate cyclic dynamics with variability across periods.
more »
« less
- Award ID(s):
- 1951095
- PAR ID:
- 10465247
- Date Published:
- Journal Name:
- Oikos
- Volume:
- 2023
- Issue:
- 2
- ISSN:
- 0030-1299
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Population cycles are fundamentally linked with spatial synchrony, the prevailing paradigm being that populations with cyclic dynamics are easily synchronised. That is, population cycles help give rise to spatial synchrony. Here we demonstrate this process can work in reverse, with synchrony causing population cycles. We show that timescale‐specific environmental effects, by synchronising local population dynamics on certain timescales only, cause major population cycles over large areas in white‐tailed deer. An important aspect of the new mechanism is specificity of synchronising effects to certain timescales, which causes local dynamics to sum across space to a substantial cycle on those timescales. We also demonstrate, to our knowledge for the first time, that synchrony can be transmitted not only from environmental drivers to populations (deer), but also from there to human systems (deer‐vehicle collisions). Because synchrony of drivers may be altered by climate change, changes to population cycles may arise via our mechanism.more » « less
-
The dynamics of colonizing populations may be strongly influenced by both extrinsic (e.g., climate and competition) and intrinsic (e.g., density) forces as well as demographic and environmental stochasticity. Understanding the impacts of these effects is crucial for predicting range expansions, trailing edge dynamics, and the viability of rare species, but the general importance of each of these forces remains unclear. Here, we assemble establishment time and spatial locations of most individuals that have reached maturity in six isolated, establishing populations of two pine species. These data allow us to quantify the relative importance of multiple factors in controlling growth of these populations. We found that climate, density, site, and demographic stochasticity were of varying importance both within and across species, but that no driver appeared to dominate dynamics across all populations and time periods. Indeed, exclusion of any one of these effects greatly reduced predictive power of our population growth models. Given the similarity in the abiotic characteristics of these sites, the varying importance of these classes of effects was surprising but speaks to the need to consider multiple effects when predicting the dynamics of small and colonizing populations.more » « less
-
Abstract Individuals differ in many ways. Most produce few offspring; a handful produce many. Some die early; others live to old age. It is tempting to attribute these differences in outcomes to differences in individual traits, and thus in the demographic rates experienced. However, there is more to individual variation than meets the eye of the biologist. Even among individuals sharing identical traits, life history outcomes (life expectancy and lifetime reproduction) will vary due to individual stochasticity, that is to chance. Quantifying the contributions of heterogeneity and chance is essential to understand natural variability. Interindividual differences vary across environmental conditions, hence heterogeneity and stochasticity depend on environmental conditions. We show that favourable conditions increase the contributions of individual stochasticity, and reduce the contributions of heterogeneity, to variance in demographic outcomes in a seabird population. The opposite is true under poor conditions. This result has important consequence for understanding the ecology and evolution of life history strategies.more » « less
-
Abstract Pleistocene glacial cycles drastically changed the distributions of taxa endemic to temperate rainforests in the Pacific Northwest, with many experiencing reduced habitat suitability during glacial periods. In this study, we investigate whether glacial cycles promoted intraspecific divergence and whether subsequent range changes led to secondary contact and gene flow. For seven invertebrate species endemic to the PNW, we estimated species distribution models (SDMs) and projected them onto current and historical climate conditions to assess how habitat suitability changed during glacial cycles. Using single nucleotide polymorphism (SNP) data from these species, we assessed population genetic structure and used a machine‐learning approach to compare models with and without gene flow between populations upon secondary contact after the last glacial maximum (LGM). Finally, we estimated divergence times and rates of gene flow between populations. SDMs suggest that there was less suitable habitat in the North Cascades and Northern Rocky Mountains during glacial compared to interglacial periods, resulting in reduced habitat suitability and increased habitat fragmentation during the LGM. Our genomic data identify population structure in all taxa, and support gene flow upon secondary contact in five of the seven taxa. Parameter estimates suggest that population divergences date to the later Pleistocene for most populations. Our results support a role of refugial dynamics in driving intraspecific divergence in the Cascades Range. In these invertebrates, population structure often does not correspond to current biogeographic or environmental barriers. Rather, population structure may reflect refugial lineages that have since expanded their ranges, often leading to secondary contact between once isolated lineages.more » « less
An official website of the United States government

