Abstract The relative spin orientations of black holes (BHs) in binaries encode their evolutionary history: BHs assembled dynamically should have isotropically distributed spins, while spins of BHs originating in the field should be aligned with the orbital angular momentum. In this article, we introduce a simple population model for these dynamical and field binaries that uses spin orientations as an anchor to disentangle these two evolutionary channels. We then analyze binary BH mergers in the Third Gravitational-Wave Transient Catalog (GWTC-3) and ask whether BHs from the isotropic-spin population possess different distributions of mass ratios, spin magnitudes, or redshifts from the preferentially aligned-spin population. We find no compelling evidence that binary BHs in GWTC-3 have different source-property distributions depending on their spin alignment, but we do find that the dynamical and field channels cannot both have mass-ratio distributions that strongly favor equal masses. We give an example of how this can be used to provide insights into the various processes that drive these BHs to merge. We also find that the current detections are insufficient in extracting differences in spin magnitude or redshift distributions of isotropic and aligned-spin populations.
more »
« less
What You Don’t Know Can Hurt You: Use and Abuse of Astrophysical Models in Gravitational-wave Population Analyses
Abstract One of the goals of gravitational-wave astrophysics is to infer the number and properties of the formation channels of binary black holes (BBHs); to do so, one must be able to connect various models with the data. We explore benefits and potential issues with analyses using models informed by population synthesis. We consider five possible formation channels of BBHs, as in Zevin et al. (2021b). First, we confirm with the GWTC-3 catalog what Zevin et al. (2021b) found in the GWTC-2 catalog, i.e., that the data are not consistent with the totality of observed BBHs forming in any single channel. Next, using simulated detections, we show that the uncertainties in the estimation of the branching ratios can shrink by up to a factor of ∼1.7 as the catalog size increases from 50 to 250, within the expected number of BBH detections in LIGO–Virgo–KAGRA's fourth observing run. Finally, we show that this type of analysis is prone to significant biases. By simulating universes where all sources originate from a single channel, we show that the influence of the Bayesian prior can make it challenging to conclude that one channel produces all signals. Furthermore, by simulating universes where all five channels contribute but only a subset of channels are used in the analysis, we show that biases in the branching ratios can be as large as ∼50% with 250 detections. This suggests that caution should be used when interpreting the results of analyses based on strongly modeled astrophysical subpopulations.
more »
« less
- Award ID(s):
- 2045740
- PAR ID:
- 10465322
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 955
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 127
- Size(s):
- Article No. 127
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a search for outer solar system objects in the 6 yr of data from the Dark Energy Survey (DES). The DES covered a contiguous 5000 deg 2 of the southern sky with ≈80,000 3 deg 2 exposures in the grizY filters between 2013 and 2019. This search yielded 812 trans-Neptunian objects (TNOs), one Centaur and one Oort cloud comet, 458 reported here for the first time. We present methodology that builds upon our previous search on the first 4 yr of data. All images were reprocessed with an optimized detection pipeline that leads to an average completeness gain of 0.47 mag per exposure, as well as improved transient catalog production and algorithms for linkage of detections into orbits. All objects were verified by visual inspection and by the “sub-threshold significance,” the signal-to-noise ratio in the stack of images in which its presence is indicated by the orbit, but no detection was reported. This yields a pure catalog complete to r ≈ 23.8 mag and distances 29 < d < 2500 au. The TNOs have minimum (median) of 7 (12) nights’ detections and arcs of 1.1 (4.2) yr, and will have grizY magnitudes available in a further publication. We present software for simulating our observational biases for comparisons of models to our detections. Initial inferences demonstrating the catalog’s statistical power are: the data are inconsistent with the CFEPS-L7 model for the classical Kuiper Belt; the 16 “extreme” TNOs ( a > 150 au, q > 30 au) are consistent with the null hypothesis of azimuthal isotropy; and nonresonant TNOs with q > 38 au, a > 50 au show a significant tendency to be sunward of major mean-motion resonances.more » « less
-
Abstract Several features in the mass spectrum of merging binary black holes (BBHs) have been identified using data from the Third Gravitational Wave Transient Catalog (GWTC-3). These features are of particular interest as they may encode the uncertain mechanism of BBH formation. We assess if the features are statistically significant or the result of Poisson noise due to the finite number of observed events. We simulate catalogs of BBHs whose underlying distribution does not have the features of interest, apply the analysis previously performed on GWTC-3, and determine how often such features are spuriously found. We find that one of the features found in GWTC-3, the peak at ∼35M☉, cannot be explained by Poisson noise alone: peaks as significant occur in 1.7% of catalogs generated from a featureless population. This peak is therefore likely to be of astrophysical origin. The data is suggestive of an additional significant peak at ∼10M☉, though the exact location of this feature is not resolvable with current observations. Additional structure beyond a power law, such as the purported dip at ∼14M☉, can be explained by Poisson noise. We also provide a publicly available package,GWMockCat, that creates simulated catalogs of BBH events with correlated measurement uncertainty and selection effects according to user-specified underlying distributions and detector sensitivities.more » « less
-
This article presents tactile drafting techniques developed in collaboration with blind educators and students that have the potential to increase BLV students’ access to drafting and engineering graphic curriculum in K-12 and higher education. This work builds on previous work funded by the National Science Foundation (Goodridge et al., 2019; Ashby et al., 2018; Lopez et al., 2020; Goodridge et al., 2021a; Goodridge et al., 2021b) and it is the authors’ hope that some of the practices included herein will allow BLV youth to further develop technological and engineering literacy in related technology and engineering graphics courses.more » « less
-
Abstract We present a major update to the Simulating eXtreme Spacetimes (SXS) Collaboration’s catalog of binary black hole simulations. Using highly efficient spectral methods implemented in the Spectral Einstein Code (SpEC), we have nearly doubled the total number of binary configurations from 2,018 to 3,756. The catalog now more densely covers the parameter space with precessing simulations up to mass ratio q = 8 and dimensionless spins up to |χ⃗| ≤ 0.8 with near-zero eccentricity. The catalog also includes some simulations at higher mass ratios with moderate spin and more than 250 eccentric simulations. We have also deprecated and rerun some simulations from our previous catalog (e.g., simulations run with a much older version of SpEC or that had anomalously high errors in the waveform). The median waveform difference (which is similar to the mismatch) between resolutions over the simulations in the catalog is 4 × 10−4. The simulations have a median of 22 orbits, while the longest simulation has 148 orbits. We have corrected each waveform in the catalog to be in the binary’s center-of-mass frame and exhibit gravitational-wave memory. We estimate the total CPU cost of all simulations in the catalog to be 480,000,000 core-hours. We find that using spectral methods for binary black hole simulations is over 1,000 times more efficient than previously published finite-difference simulations. The full catalog is publicly available through the sxs Python package and at https://data.black-holes.org .more » « less
An official website of the United States government
