skip to main content


Title: Finite dimensional surrogates for extreme events
Numerical solutions of stochastic problems require the representation of random functions in their definitions by finite dimensional (FD) models, i.e., deterministic functions of time and finite sets of random variables. It is common to represent the coefficients of these FD surrogates by polynomial chaos (PC) models. We propose a novel model, referred to as the polynomial chaos translation (PCT) model, which matches exactly the marginal distributions of the FD coefficients and approximately their dependence. PC- and PCT- based FD models are constructed for a set of test cases and a wind pressure time series recorded at the boundary layer wind tunnel facility at the University of Florida. The PCT-based models capture the joint distributions of the FD coefficients and the extremes of target times series accurately while PC-based FD models do not have this capability.  more » « less
Award ID(s):
2013697
NSF-PAR ID:
10465379
Author(s) / Creator(s):
Date Published:
Journal Name:
14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 Dublin, Ireland, July 9-13, 2023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Truncated Karhunen–Loève (KL) representations are used to construct finite dimensional (FD) models for non-Gaussian functions with finite variances. The second moment specification of the random coefficients of these representations are enhanced to full probabilistic characterization by using translation, polynomial chaos, and translated polynomial chaos models, referred to as T, PC, and PCT models. Following theoretical considerations on KL representations and T, PC, and PCT models, three numerical examples are presented to illustrate the implementation and performance of these models. The PCT models inherit the desirable features of both T and PC models. It approximates accurately all quantities of interest considered in these examples. 
    more » « less
  2. Truncated Karhunen–Loève (KL) representations are used to construct finite dimensional (FD) models for non-Gaussian functions with finite variances. The second moment specification of the random coefficients of these representations are enhanced to full probabilistic characterization by using translation, polynomial chaos, and translated polynomial chaos models, referred to as T, PC, and PCT models. Following theoretical considerations on KL representations and T, PC, and PCT models, three numerical examples are presented to illustrate the implementation and performance of these models. The PCT models inherit the desirable features of both T and PC models. It approximates accurately all quantities of interest considered in these examples. 
    more » « less
  3. Finite dimensional (FD) models, i.e., deterministic functions of space depending on finite sets of random variables, are used extensively in applications to generate samples of random fields Z(x) and construct approximations of solutions U(x) of ordinary or partial differential equations whose random coefficients depend on Z(x). FD models of Z(x) and U(x) constitute surrogates of these random fields which target various properties, e.g., mean/correlation functions or sample properties. We establish conditions under which samples of FD models can be used as substitutes for samples of Z(x) and U(x) for two types of random fields Z(x) and a simple stochastic equation. Some of these conditions are illustrated by numerical examples. 
    more » « less
  4. Abstract

    There is often considerable uncertainty in parameters in ecological models. This uncertainty can be incorporated into models by treating parameters as random variables with distributions, rather than fixed quantities. Recent advances in uncertainty quantification methods, such as polynomial chaos approaches, allow for the analysis of models with random parameters. We introduce these methods with a motivating case study of sea ice algal blooms in heterogeneous environments. We compare Monte Carlo methods with polynomial chaos techniques to help understand the dynamics of an algal bloom model with random parameters. Modelling key parameters in the algal bloom model as random variables changes the timing, intensity and overall productivity of the modelled bloom. The computational efficiency of polynomial chaos methods provides a promising avenue for the broader inclusion of parametric uncertainty in ecological models, leading to improved model predictions and synthesis between models and data.

     
    more » « less
  5. The focus of this paper is on the global sensitivity analysis (GSA) of linear systems with time-invariant model parameter uncertainties and driven by stochastic inputs. The Sobol' indices of the evolving mean and variance estimates of states are used to assess the impact of the time-invariant uncertain model parameters and the statistics of the stochastic input on the uncertainty of the output. Numerical results on two benchmark problems help illustrate that it is conceivable that parameters, which are not so significant in contributing to the uncertainty of the mean, can be extremely significant in contributing to the uncertainty of the variances. The paper uses a polynomial chaos (PC) approach to synthesize a surrogate probabilistic model of the stochastic system after using Lagrange interpolation polynomials (LIPs) as PC bases. The Sobol' indices are then directly evaluated from the PC coefficients. Although this concept is not new, a novel interpretation of stochastic collocation-based PC and intrusive PC is presented where they are shown to represent identical probabilistic models when the system under consideration is linear. This result now permits treating linear models as black boxes to develop intrusive PC surrogates. 
    more » « less