skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Joint neural phase retrieval and compression for energy- and computation-efficient holography on the edge
Recent deep learning approaches have shown remarkable promise to enable high fidelity holographic displays. However, lightweight wearable display devices cannot afford the computation demand and energy consumption for hologram generation due to the limited onboard compute capability and battery life. On the other hand, if the computation is conducted entirely remotely on a cloud server, transmitting lossless hologram data is not only challenging but also result in prohibitively high latency and storage. In this work, by distributing the computation and optimizing the transmission, we propose the first framework that jointly generates and compresses high-quality phase-only holograms. Specifically, our framework asymmetrically separates the hologram generation process into high-compute remote encoding (on the server), and low-compute decoding (on the edge) stages. Our encoding enables light weight latent space data, thus faster and efficient transmission to the edge device. With our framework, we observed a reduction of 76% computation and consequently 83% in energy cost on edge devices, compared to the existing hologram generation methods. Our framework is robust to transmission and decoding errors, and approach high image fidelity for as low as 2 bits-per-pixel, and further reduced average bit-rates and decoding time for holographic videos.  more » « less
Award ID(s):
2107454
PAR ID:
10465404
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
41
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Holography is a promising avenue for high-quality displays without requiring bulky, complex optical systems. While recent work has demonstrated accurate hologram generation of 2D scenes, high-quality holographic projections of 3D scenes has been out of reach until now. Existing multiplane 3D holography approaches fail to model wavefronts in the presence of partial occlusion while holographic stereogram methods have to make a fundamental tradeoff between spatial and angular resolution. In addition, existing 3D holographic display methods rely on heuristic encoding of complex amplitude into phase-only pixels which results in holograms with severe artifacts. Fundamental limitations of the input representation, wavefront modeling, and optimization methods prohibit artifact-free 3D holographic projections in today’s displays. To lift these limitations, we introduce hogel-free holography which optimizes for true 3D holograms, supporting both depth- and view-dependent effects for the first time. Our approach overcomes the fundamental spatio-angular resolution tradeoff typical to stereogram approaches. Moreover, it avoids heuristic encoding schemes to achieve high image fidelity over a 3D volume. We validate that the proposed method achieves 10 dB PSNR improvement on simulated holographic reconstructions. We also validate our approach on an experimental prototype with accurate parallax and depth focus effects. 
    more » « less
  2. Holography has demonstrated potential to achieve a wide field of view, focus supporting, optical see-through augmented reality display in an eyeglasses form factor. Although phase modulating spatial light modulators are becoming available, the phase-only hologram generation algorithms are still imprecise resulting in severe artifacts in the reconstructed imagery. Since the holographic phase retrieval problem is non-linear and non-convex and computationally expensive with the solutions being non-unique, the existing methods make several assumptions to make the phase-only hologram computation tractable. In this work, we deviate from any such approximations and solve the holographic phase retrieval problem as a quadratic problem using complex Wirtinger gradients and standard first-order optimization methods. Our approach results in high-quality phase hologram generation with at least an order of magnitude improvement over existing state-of-the-art approaches. 
    more » « less
  3. Holographic displays are an upcoming technology for AR and VR applications, with the ability to show 3D content with accurate depth cues, including accommodation and motion parallax. Recent research reveals that only a fraction of holographic pixels are needed to display images with high fidelity, improving energy efficiency in future holographic displays. However, the existing iterative method for computing sparse amplitude and phase layouts does not run in real time; instead, it takes hundreds of milliseconds to render an image into a sparse hologram. In this paper, we present a non-iterative amplitude and phase computation for sparse Fourier holograms that uses Perlin noise in the image–plane phase. We conduct simulated and optical experiments. Compared to the Gaussian-weighted Gerchberg–Saxton method, our method achieves a run time improvement of over 600 times while producing a nearly equal PSNR and SSIM quality. The real-time performance of our method enables the presentation of dynamic content crucial to AR and VR applications, such as video streaming and interactive visualization, on holographic displays. 
    more » « less
  4. Dual-connectivity streaming is a key enabler of next generation six Degrees Of Freedom (6DOF) Virtual Reality (VR) scene immersion. Indeed, using conventional sub-6 GHz WiFi only allows to reliably stream a low-quality baseline representation of the VR content, while emerging high-frequency communication technologies allow to stream in parallel a high-quality user viewport-specific enhancement representation that synergistically integrates with the baseline representation, to deliver high-quality VR immersion. We investigate holistically as part of an entire future VR streaming system two such candidate emerging technologies, Free Space Optics (FSO) and millimeter-Wave (mmWave) that benefit from a large available spectrum to deliver unprecedented data rates. We analytically characterize the key components of the envisioned dual-connectivity 6DOF VR streaming system that integrates in addition edge computing and scalable 360° video tiling, and we formulate an optimization problem to maximize the immersion fidelity delivered by the system, given the WiFi and mmWave/FSO link rates, and the computing capabilities of the edge server and the users’ VR headsets. This optimization problem is mixed integer programming of high complexity and we formulate a geometric programming framework to compute the optimal solution at low complexity. We carry out simulation experiments to assess the performance of the proposed system using actual 6DOF navigation traces from multiple mobile VR users that we collected. Our results demonstrate that our system considerably advances the traditional state-of-the-art and enables streaming of 8K-120 frames-per-second (fps) 6DOF content at high fidelity. 
    more » « less
  5. Connected Autonomous Vehicles (CAVs) have achieved significant improvements in recent years. The CAVs can share sensor data to improve autonomous driving performance and enhance road safety. CAV architecture depends on roadside edge servers for latency-sensitive applications. The roadside edge servers are equipped with high-performance embedded edge computing devices that perform calculations with low power requirements. As the number of vehicles varies over different times of the day and vehicles can request for different CAV applications, the computation requirements for roadside edge computing platform can also vary. Hence, a framework for dynamic deployment of edge computing platforms can ensure CAV applications’ performance and proper usage of the devices. In this paper, we propose R-CAV – a framework for drone-based roadside edge server deployment that provides roadside units (RSUs) based on the computation requirement. Our proof of concept implementation for object detection algorithm using Nvidia Jetson nano demonstrates the proposed framework's feasibility. We posit that the framework will enhance the intelligent transport system vision by ensuring CAV applications’ quality of service. 
    more » « less