skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Practical Interference Exploitation Precoding Without Symbol-by-Symbol Optimization: A Block-Level Approach
Award ID(s):
2008724
PAR ID:
10465489
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Wireless Communications
Volume:
22
Issue:
6
ISSN:
1536-1276
Page Range / eLocation ID:
3982 to 3996
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Symbol-level precoding (SLP) based on the concept of constructive interference (CI) is shown to be superior to traditional block-level precoding (BLP), however at the cost of a symbol-by-symbol optimization during the precoding design. In this paper, we propose a CI-based block-level precoding (CI-BLP) scheme for the downlink transmission of a multi-user multiple-input single-output (MU-MISO) communication system, where we design a constant precoding matrix to a block of symbol slots to exploit CI for each symbol slot simultaneously. A single optimization problem is formulated to maximize the minimum CI effect over the entire block, thus reducing the computational cost of traditional SLP as the optimization problem only needs to be solved once per block. By leveraging the Karush-Kuhn-Tucker (KKT) conditions and the dual problem formulation, the original optimization problem is finally shown to be equivalent to a quadratic programming (QP) over a simplex. Numerical results validate our derivations and exhibit superior performance for the proposed CI-BLP scheme over traditional BLP and SLP methods, thanks to the relaxed block-level power constraint. 
    more » « less
  2. null (Ed.)
    A double occurrence word (DOW) is a word in which every symbol appears exactly twice. We define the symbol separation of a DOW [Formula: see text] to be the number of letters between the two copies of a symbol, and the separation of [Formula: see text] to be the sum of separations over all symbols in [Formula: see text]. We then analyze relationship among size, reducibility and separation of DOWs. Specifically, we provide tight bounds of separations of DOWs with a given size and characterize the words that attain those bounds. We show that all separation numbers within the bounds can be realized. We present recursive formulas for counting the numbers of DOWs with a given separation under various restrictions, such as the number of irreducible factors. These formulas can be obtained by inductive construction of all DOWs with the given separation. 
    more » « less
  3. Three meanings of the minus sign are shared. 
    more » « less