skip to main content


This content will become publicly available on March 1, 2024

Title: Block-Level Interference Exploitation Precoding without Symbol-by-Symbol Optimization
Symbol-level precoding (SLP) based on the concept of constructive interference (CI) is shown to be superior to traditional block-level precoding (BLP), however at the cost of a symbol-by-symbol optimization during the precoding design. In this paper, we propose a CI-based block-level precoding (CI-BLP) scheme for the downlink transmission of a multi-user multiple-input single-output (MU-MISO) communication system, where we design a constant precoding matrix to a block of symbol slots to exploit CI for each symbol slot simultaneously. A single optimization problem is formulated to maximize the minimum CI effect over the entire block, thus reducing the computational cost of traditional SLP as the optimization problem only needs to be solved once per block. By leveraging the Karush-Kuhn-Tucker (KKT) conditions and the dual problem formulation, the original optimization problem is finally shown to be equivalent to a quadratic programming (QP) over a simplex. Numerical results validate our derivations and exhibit superior performance for the proposed CI-BLP scheme over traditional BLP and SLP methods, thanks to the relaxed block-level power constraint.  more » « less
Award ID(s):
2008724
NSF-PAR ID:
10465491
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proc. 2023 IEEE Wireless Communications and Networking Conference (WCNC)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Space-time adaptive processing (STAP) is an effective method for multi-input multi-output (MIMO) radar systems to identify moving targets in the presence of multiple interferers. The idea of joint optimization in both spatial and temporal domains for radar detection is consistent with the symbol-level precoding (SLP) technique for MIMO communication systems, that optimizes the transmit waveform according to instantaneous transmitted symbols. Therefore, in this paper we combine STAP and constructive interference (CI)-based SLP techniques to realize dual-functional radar-communication (DFRC). The radar output signal-to-interference-plus-noise ratio (SINR) is maximized by jointly optimizing the transmit waveform and receive filter, while satisfying the communication quality-of-service (QoS) constraints and the constant modulus power constraint. An efficient algorithm based on majorization-minimization (MM) and nonlinear equality constrained alternative direction method of multipliers (neADMM) methods is proposed to solve the non-convex optimization problem. Simulation results verify the effectiveness of the proposed DFRC scheme and the associate algorithm. 
    more » « less
  2. Overlay cognitive radio (CR) networks include a primary and cognitive base station (BS) sharing the same frequency band. This paper focuses on designing a robust symbol-level pre-coding (SLP) scheme where the primary BS shares data and quantized channel state information (CSI) with the cognitive BS. The proposed approach minimizes the cognitive BS transmission power under symbol-wise Safety Margin (SM) constraints for both the primary and cognitive systems. We apply the additive quantization noise model to describe the statistics of the quantized PBS CSI and employ a stochastic constraint to formulate the optimization problem, which is then converted to be deterministic. Simulation results show that the robust SLP protects the primary users from the effect of the imperfect CSI and simultaneously offers significantly improved energy efficiency compared to nonrobust methods. 
    more » « less
  3. Coarsely quantized MIMO signalling methods have gained popularity in the recent developments of massive MIMO as they open up opportunities for massive MIMO implementation using cheap and power-efficient radio-frequency front-ends. This paper presents a new one-bit MIMO precoding approach using spatial Sigma-Delta (∑Δ) modulation. In previous one-bit MIMO precoding research, one mainly focuses on using optimization to tackle the difficult binary signal optimization problem that arise from the precoding design. Our approach attempts a different route. Assuming angular MIMO channels, we apply ∑Δ modulation—a classical concept in analog-to-digital conversion of temporal signals—in space. The resulting ∑Δ precoding approach has two main advantages: First, we no longer need to deal with binary optimization in ∑Δ precoding design. Particularly, the binary signal restriction is replaced by convex signal amplitude constraints. Second, the impact of the quantization error can be well controlled via modulator design and under appropriate operating conditions. Through symbol error probability analysis, we reveal that the very large number of antennas in massive MIMO provides favorable operating conditions for ∑Δ precoding. In addition, we develop a new ∑Δ modulation architecture that is capable of adapting the channel to achieve nearly zero quantization error for a targeted user. Furthermore, we consider multi-user ∑Δ precoding using the zero-forcing and symbol-level precoding schemes. These two ∑Δ precoding schemes perform considerably better than their direct one-bit quantized counterparts, as simulation results show. 
    more » « less
  4. One-bit digital-to-analog converters (DACs) are a practical and promising solution for reducing cost and power consumption in massive multiple-input multiple-output (MIMO) systems. However, the one-bit precoding problem is NP-hard and even more challenging in frequency-selective fading channels compared to the flat-fading scenario. While block-wise processing (BWP) can effectively address the inter-symbol-interference (ISI) in frequency-selective fading channels, its computational complexity and processing delay can be too high for practical implementation. An alternative solution to alleviate the processing complexity and delay issues is symbol-wise processing (SWP) which sequentially designs the transmit signals. However, existing SWP work leaves unwanted interference for later signal designs. In this paper, we propose an SWP approach which can efficiently address the ISI even at the symbol rate. The idea is to design the transmit signal to not only be beneficial for its time slot, but also to provide constructive interference for subsequent symbols. We develop two active ISI processing methods that significantly outperform a conventional approach, one of which that even outperforms the BWP approach at low SNR. 
    more » « less
  5. In this paper, we focus on the multiuser massive multiple-input single-output (MISO) downlink with low-cost 1-bit digital-to-analog converters (DACs) for PSK modulation, and propose a low-complexity refinement process that is applicable to any existing 1-bit precoding approaches based on the constructive interference (CI) formulation. With the decomposition of the signals along the detection thresholds, we first formulate a simple symbol-scaling method as the performance metric. The low-complexity refinement approach is subsequently introduced, where we aim to improve the introduced symbol-scaling performance metric by modifying the transmit signal on one antenna at a time. Numerical results validate the effectiveness of the proposed refinement method on existing approaches for massive MIMO with 1-bit DACs, and the performance improvements are most significant for the low-complexity quantized zero-forcing (ZF) method. 
    more » « less