skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Consequential Role of Aesthetics in Forest Fuels Reduction Propensities: Diverse Landowners’ Attitudes and Responses to Project Types, Risks, Costs, and Habitat Benefits
Private landowners in the southern Willamette Valley of Oregon, USA were surveyed. The survey queried probabilities of implementing specific fuels reduction projects in extensive areas of specific forest types on their property. The projects were described in relation to the beginning and target forest types, the actions required, costs, and long-term maintenance. Forest types were first rated for scenic beauty and informed levels of wildfire risk reduction, scarce habitat production, and associated property rights risks. Propensities to perform each fuels reduction project were then obtained. These were adversely affected by disbelief in heightened wildfire risks or climate change, higher project costs, feelings of hopeless vulnerability to wildfire, and low aesthetic affections for target forests. Propensities were enhanced by aesthetic affection for target forests, belief in the efficaciousness of fuels reduction, previous experience with wildfire evacuation, and higher incomes. All landowners favored thinning of young conifer forests, but some were averse to thinning of mature conifer forests. Anthropocentric landowners, mainly farmers, foresters, and some small holders, tended to favor conventional thinnings toward commercially valuable conifer forests and avoided long-term habitat maintenance. Nature-centric landowners, mainly some rural residents and wealthy estate owners, leaned more toward long term habitat goals and oak forests.  more » « less
Award ID(s):
1922866
PAR ID:
10465524
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Land
Volume:
11
Issue:
12
ISSN:
2073-445X
Page Range / eLocation ID:
2151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great – can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? and (10) Is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest successional heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes. 
    more » « less
  2. Wildfire activity is increasing in boreal forests as climate warms and dries, increasing risks to rural and urban communities. In black spruce forests of Interior Alaska, fuel reduction treatments are used to create a defensible space for fire suppression and slow fire spread. These treatments introduce novel disturbance characteristics, making longer-term outcomes on ecosystem structure and wildfire risk reduction uncertain. We remeasured a network of sites where fuels were reduced through hand thinning or mechanical shearblading in Interior Alaska to assess how successional trajectories of tree dominance, understory composition, and permafrost change over ∼ 20 years after treatment. We also assessed if these fuel reduction treatments reduce modeled surface rate of fire spread (ROS), flame length, and fireline intensity relative to an untreated black spruce stand, and if surface fire behavior changes over time. In thinned areas, soil organic layer (SOL) disturbance promoted tree seedling recruitment but did not change over time. In shearbladed sites, by contrast, both conifer and broad-leaved deciduous seedling density increased over time and deciduous seedlings were 20 times more abundant than spruce. Thaw depth increased over time in both treatments and was greatest in shearbladed sites with a thin SOL. Understory composition was not altered by thinning but in shearbladed treatments shifted from forbs and horsetail to tall deciduous shrubs and grasses over time. Modeled surface fire behavior was constant in shearbladed sites. This finding is inconsistent with expert opinion, highlighting the need for additional fuels-specific data to capture the changing vegetation structure. Treatment effectiveness at reducing modeled surface ROS, flame length, and fireline intensity depended on the fuel model used for an untreated black spruce stand, pointing to uncertainties about the efficacy of these treatments at mitigating surface fire behavior. Overall, we show that fuel reduction treatments can promote low flammability, deciduous tree dominated successional trajectories, and that shearblading has strong effects on understory composition and permafrost degradation that persist for nearly two decades after disturbance. Such factors need to be considered to enhance the design, management, and predictions of fire behavior in these treatments. 
    more » « less
  3. Recent drought, wildfires and rising temperatures in the western US highlight the urgency of increasing resiliency in overstocked forests. However, limited valuation information hinders the broader participation of beneficiaries in forest management. We assessed how historical disturbances in California's Central Sierra Nevada affected live biomass, forest water use and carbon uptake and estimated marginal values of these changes. On average, low‐severity wildfire caused greater declines in forest evapotranspiration (ET), gross primary productivity (GPP) and live biomass than did commercial thinning. Low‐severity wildfires represent proxies for prescribed burns and both function as biomass removal to alleviate overstocked conditions. Increases in potential runoff over 15 years post‐disturbance were valued at $108,000/km2for commercial thinning versus $234,000/km2for low‐severity wildfire, based on historical water prices. Respective declines in GPP were valued at −$305,000 and −$1,317,000/km2, based on an average social cost of carbon. Considering biomass levels created by commercial thinning and low‐severity fire as more‐sustainable management baselines for overstocked forests, carbon uptake over 15 years post‐disturbance can be viewed as a benefit rather than loss. Realizing this benefit upon management re‐entry may require sequestering thinned material. High‐severity wildfire and clearcutting resulted in greater declines in ET and thus greater potential water benefits but also substantial declines in GPP and live carbon. These lessons from historical disturbances indicate what benefit ranges from fuels treatments can be expected from more‐sustainable management of mixed‐conifer forests and the importance of setting an appropriate baseline. 
    more » « less
  4. Increasing wildfires in western North American conifer forests have led to debates surrounding the application of post-fire management practices. There is a lack of consensus on whether (and to what extent) post-fire management assists or hinders managers in achieving goals, particularly in under-studied regions like eastern ponderosa pine forests. This makes it difficult for forest managers to balance among competing interests. We contrast structural and community characteristics across unburned ponderosa pine forest, severely burned ponderosa pine forest, and severely burned ponderosa pine forest treated with post-fire management with respect to three management objectives: ponderosa pine regeneration, wildland fuels control, and habitat conservation. Ponderosa pine saplings were more abundant in treated burned sites than untreated burned sites, suggesting increases in tree regeneration following tree planting; however, natural regeneration was evident in both unburned and untreated burned sites. Wildland fuels management greatly reduced snags and coarse woody debris in treated burned sites. Understory cover measurements revealed bare ground and fine woody debris were more strongly associated with untreated burned sites, and greater levels of forbs and grass were more strongly associated with treated burned sites. Wildlife habitat was greatly reduced following post-fire treatments. There were no tree cavities in treated burned sites, whereas untreated burned sites had an average of 27 ± 7.68 cavities per hectare. Correspondingly, we found almost double the avian species richness in untreated burned sites compared to treated burned sites (22 species versus 12 species). Unburned forests and untreated burned areas had the same species richness, but hosted unique avian communities. Our results indicate conflicting outcomes with respect to management objectives, most evident in the clear costs to habitat conservation following post-fire management application. 
    more » « less
  5. Abstract Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate‐driven disturbances pose critical risks to the long‐term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress‐driven tree mortality, including a separate insect‐driven tree mortality, for the contiguous United States for current (1984–2018) and project these future disturbance risks over the 21st century. We find that current risks are widespread and projected to increase across different emissions scenarios by a factor of >4 for fire and >1.3 for climate‐stress mortality. These forest disturbance risks highlight pervasive climate‐sensitive disturbance impacts on US forests and raise questions about the risk management approach taken by forest carbon offset policies. Our results provide US‐wide risk maps of key climate‐sensitive disturbances for improving carbon cycle modeling, conservation and climate policy. 
    more » « less