Understanding global patterns of genetic diversity (GD) is essential to describe, monitor, and preserve the processes giving rise to life on Earth. To date, efforts to map macrogenetic patterns have been restricted to vertebrate groups that comprise a small fraction of Earth’s biodiversity. Here, we construct the first global map of predicted insect genetic diversity. We calculate the global distribution of GD mean (GDM) and evenness (GDE) of insect assemblages, identify the global environmental correlates of insect GD, and make predictions for undersampled regions. Based on the largest and most species-rich single-locus genetic dataset assembled to date, we find that both GD metrics follow a bimodal latitudinal gradient, where GDM and GDE correlate with contemporary climate variation. Our models explain 1/4 and 1/3 of the observed variation in GDM and GDE in insects, respectively, making an important step towards describing global biodiversity patterns in the most diverse animal taxon.
more »
« less
Global determinants of insect mitochondrial genetic diversity
Abstract Understanding global patterns of genetic diversity is essential for describing, monitoring, and preserving life on Earth. To date, efforts to map macrogenetic patterns have been restricted to vertebrates, which comprise only a small fraction of Earth’s biodiversity. Here, we construct a global map of predicted insect mitochondrial genetic diversity from cytochrome c oxidase subunit 1 sequences, derived from open data. We calculate the mitochondrial genetic diversity mean and genetic diversity evenness of insect assemblages across the globe, identify their environmental correlates, and make predictions of mitochondrial genetic diversity levels in unsampled areas based on environmental data. Using a large single-locus genetic dataset of over 2 million globally distributed and georeferenced mtDNA sequences, we find that mitochondrial genetic diversity evenness follows a quadratic latitudinal gradient peaking in the subtropics. Both mitochondrial genetic diversity mean and evenness positively correlate with seasonally hot temperatures, as well as climate stability since the last glacial maximum. Our models explain 27.9% and 24.0% of the observed variation in mitochondrial genetic diversity mean and evenness in insects, respectively, making an important step towards understanding global biodiversity patterns in the most diverse animal taxon.
more »
« less
- PAR ID:
- 10465554
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Genetic diversity is a fundamental component of biodiversity. Examination of global patterns of genetic diversity can help highlight mechanisms underlying species diversity, though a recurring challenge has been that patterns may vary by molecular marker. Here, we compiled 6862 observations of genetic diversity from 492 species of marine fish and tested among hypotheses for diversity gradients: the founder effect hypothesis, the kinetic energy hypothesis, and the productivity‐diversity hypothesis. We fit generalized linear mixed effect models (GLMMs) and explored the extent to which various macroecological drivers (latitude, longitude, temperature (SST), and chlorophyll‐a concentration) explained variation in genetic diversity. We found that mitochondrial genetic diversity followed geographic gradients similar to those of species diversity, being highest near the Equator, particularly in the Coral Triangle, while nuclear genetic diversity did not follow clear geographic patterns. Despite these differences, all genetic diversity metrics were correlated with chlorophyll‐a concentration, while mitochondrial diversity was also positively associated with SST. Our results provide support for the kinetic energy hypothesis, which predicts that elevated mutation rates at higher temperatures increase mitochondrial but not necessarily nuclear diversity, and the productivity‐diversity hypothesis, which posits that resource‐rich regions support larger populations with greater genetic diversity. Overall, these findings reveal how environmental variables can influence mutation rates and genetic drift in the ocean, caution against using mitochondrial macrogenetic patterns as proxies for whole‐genome diversity, and aid in defining global gradients of genetic diversity.more » « less
-
Ruane, Sara (Ed.)Abstract Comparisons of intraspecific genetic diversity across species can reveal the roles of geography, ecology, and life history in shaping biodiversity. The wide availability of mitochondrial DNA (mtDNA) sequences in open-access databases makes this marker practical for conducting analyses across several species in a common framework, but patterns may not be representative of overall species diversity. Here, we gather new and existing mtDNA sequences and genome-wide nuclear data (genotyping-by-sequencing; GBS) for 30 North American squamate species sampled in the Southeastern and Southwestern United States. We estimated mtDNA nucleotide diversity for 2 mtDNA genes, COI (22 species alignments; average 16 sequences) and cytb (22 species; average 58 sequences), as well as nuclear heterozygosity and nucleotide diversity from GBS data for 118 individuals (30 species; 4 individuals and 6,820 to 44,309 loci per species). We showed that nuclear genomic diversity estimates were highly consistent across individuals for some species, while other species showed large differences depending on the locality sampled. Range size was positively correlated with both cytb diversity (phylogenetically independent contrasts: R2 = 0.31, P = 0.007) and GBS diversity (R2 = 0.21; P = 0.006), while other predictors differed across the top models for each dataset. Mitochondrial and nuclear diversity estimates were not correlated within species, although sampling differences in the data available made these datasets difficult to compare. Further study of mtDNA and nuclear diversity sampled across species’ ranges is needed to evaluate the roles of geography and life history in structuring diversity across a variety of taxonomic groups.more » « less
-
Ecosystems are experiencing changing global patterns of mean annual precipitation (MAP) and enrichment with multiple nutrients that potentially colimit plant biomass production. In grasslands, mean aboveground plant biomass is closely related to MAP, but how this relationship changes after enrichment with multiple nutrients remains unclear. We hypothesized the global biomass–MAP relationship becomes steeper with an increasing number of added nutrients, with increases in steepness corresponding to the form of interaction among added nutrients and with increased mediation by changes in plant community diversity. We measured aboveground plant biomass production and species diversity in 71 grasslands on six continents representing the global span of grassland MAP, diversity, management, and soils. We fertilized all sites with nitrogen, phosphorus, and potassium with micronutrients in all combinations to identify which nutrients limited biomass at each site. As hypothesized, fertilizing with one, two, or three nutrients progressively steepened the global biomass–MAP relationship. The magnitude of the increase in steepness corresponded to whether sites were not limited by nitrogen or phosphorus, were limited by either one, or were colimited by both in additive, or synergistic forms. Unexpectedly, we found only weak evidence for mediation of biomass–MAP relationships by plant community diversity because relationships of species richness, evenness, and beta diversity to MAP and to biomass were weak or opposing. Site-level properties including baseline biomass production, soils, and management explained little variation in biomass–MAP relationships. These findings reveal multiple nutrient colimitation as a defining feature of the global grassland biomass–MAP relationship.more » « less
-
Genetic variants of mitochondrial DNA at the individual (heteroplasmy) and population (polymorphism) levels provide insight into their roles in multiple cellular and evolutionary processes. However, owing to the paucity of genome-wide data at the within-individual and population levels, the broad patterns of these two forms of variation remain poorly understood. Here, we analyze 1,804 complete mitochondrial genome sequences from Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Extensive heteroplasmy is observed in D. obtusa, where the high level of intraclonal divergence must have resulted from a biparental-inheritance event, and recombination in the mitochondrial genome is apparent, although perhaps not widespread. Global samples of D. pulex reveal remarkably low mitochondrial effective population sizes, <3% of those for the nuclear genome. In addition, levels of population diversity in mitochondrial and nuclear genomes are uncorrelated across populations, suggesting an idiosyncratic evolutionary history of mitochondria in D. pulex. These population-genetic features appear to be a consequence of background selection associated with highly deleterious mutations arising in the strongly linked mitochondrial genome, which is consistent with polymorphism and divergence data suggesting a predominance of strong purifying selection. Nonetheless, the fixation of mildly deleterious mutations in the mitochondrial genome also appears to be driving positive selection on genes encoded in the nuclear genome whose products are deployed in the mitochondrion.more » « less
An official website of the United States government

