We present high-precision radial velocities (RVs) from the HARPS-N spectrograph for HD 79210 and HD 79211, two M0V members of a gravitationally bound binary system. We detect a planet candidate with a period of
We present an analysis of Sun-as-a-star observations from four different high-resolution, stabilized spectrographs—HARPS, HARPS-N, EXPRES, and NEID. With simultaneous observations of the Sun from four different instruments, we are able to gain insight into the radial velocity precision and accuracy delivered by each of these instruments and isolate instrumental systematics that differ from true astrophysical signals. With solar observations, we can completely characterize the expected Doppler shift contributed by orbiting Solar System bodies and remove them. This results in a data set with measured velocity variations that purely trace flows on the solar surface. Direct comparisons of the radial velocities measured by each instrument show remarkable agreement with residual intraday scatter of only 15–30 cm s−1. This shows that current ultra-stabilized instruments have broken through to a new level of measurement precision that reveals stellar variability with high fidelity and detail. We end by discussing how radial velocities from different instruments can be combined to provide powerful leverage for testing techniques to mitigate stellar signals.
more » « less- Award ID(s):
- 2009528
- PAR ID:
- 10465653
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 166
- Issue:
- 4
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 173
- Size(s):
- Article No. 173
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract days around HD 79211 in these HARPS-N RVs, validating the planet candidate originally identified in CARMENES RV data alone. Using HARPS-N, CARMENES, and RVs spanning a total of 25 yr, we further refine the planet candidate parameters toP = 24.422 ± 0.014 days,K = 3.19 ± 0.27 m s−1,M sini = 10.6 ± 1.2M ⊕, anda = 0.142 ± 0.005 au. We do not find any additional planet candidate signals in the data of HD 79211, nor do we find any planet candidate signals in HD 79210. This system adds to the number of exoplanets detected in binaries with M-dwarf members and serves as a case study for planet formation in stellar binaries. -
ABSTRACT Although instruments for measuring the radial velocities (RVs) of stars now routinely reach sub-metre per second accuracy, the detection of low-mass planets is still very challenging. The rotational modulation and evolution of spots and/or faculae can induce variations in the RVs at the level of a few m s–1 in Sun-like stars. To overcome this, a multidimensional Gaussian Process framework has been developed to model the stellar activity signal using spectroscopic activity indicators together with the RVs. A recently published computationally efficient implementation of this framework, S + LEAF 2, enables the rapid analysis of large samples of targets with sizeable data sets. In this work, we apply this framework to HARPS observations of 268 well-observed targets with precisely determined stellar parameters. Our long-term goal is to quantify the effectiveness of this framework to model and mitigate activity signals for stars of different spectral types and activity levels. In this first paper in the series, we initially focus on the activity indicators (S-index and Bisector Inverse Slope), and use them to (a) measure rotation periods for 49 slow rotators in our sample, (b) explore the impact of these results on the spin-down of middle-aged late F, G, and K stars, and (c) explore indirectly how the spot to facular ratio varies across our sample. Our results should provide valuable clues for planning future RV planet surveys such as the Terra Hunting Experiment or the PLATO ground-based follow-up observations programme, and help fine-tune current stellar structure and evolution models.
-
Abstract We present 3D velocity measurements and acceleration limits for stars within a few parsec of the Galactic Center (GC) black hole, Sgr A*, based on observations of 43 and 86 GHz circumstellar maser emission. Observations were taken with the Very Large Array in 2013, 2014, and 2020 and with the Atacama Large Millimeter/submillimeter Array in 2015 and 2017. We detect 28 masers in total, of which four are new detections. Combining these data with extant maser astrometry, we calculate stellar proper motions and accelerations with uncertainties as low as ∼10
μ as yr−1and 0.5μ as yr−2, respectively, corresponding to approximately 0.5 km s−1and 0.04 km s−1yr−1at a distance of 8 kpc. We measure radial velocities from maser spectra with ∼0.5 km s−1uncertainties, though the precision and accuracy of such measurements for deducing the underlying stellar velocities are limited by the complex spectral profiles of some masers. We therefore measure radial acceleration limits with typical uncertainties of ∼0.1 km s−1yr−1. We analyze the resulting 3D velocities and accelerations with respect to expected motions resulting from models of the mass distribution in the GC. -
Abstract Measured spectral shifts due to intrinsic stellar variability (e.g., pulsations, granulation) and activity (e.g., spots, plages) are the largest source of error for extreme-precision radial-velocity (EPRV) exoplanet detection. Several methods are designed to disentangle stellar signals from true center-of-mass shifts due to planets. The Extreme-precision Spectrograph (EXPRES) Stellar Signals Project (ESSP) presents a self-consistent comparison of 22 different methods tested on the same extreme-precision spectroscopic data from EXPRES. Methods derived new activity indicators, constructed models for mapping an indicator to the needed radial-velocity (RV) correction, or separated out shape- and shift-driven RV components. Since no ground truth is known when using real data, relative method performance is assessed using the total and nightly scatter of returned RVs and agreement between the results of different methods. Nearly all submitted methods return a lower RV rms than classic linear decorrelation, but no method is yet consistently reducing the RV rms to sub-meter-per-second levels. There is a concerning lack of agreement between the RVs returned by different methods. These results suggest that continued progress in this field necessitates increased interpretability of methods, high-cadence data to capture stellar signals at all timescales, and continued tests like the ESSP using consistent data sets with more advanced metrics for method performance. Future comparisons should make use of various well-characterized data sets—such as solar data or data with known injected planetary and/or stellar signals—to better understand method performance and whether planetary signals are preserved.
-
null (Ed.)ABSTRACT We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 $\rm {M_J}$ (43.9 ± 7.3 $\, M_{\rm \oplus}$), a radius of RP = 0.639 ± 0.013 $\rm {R_J}$ (7.16 ± 0.15 $\, \mathrm{ R}_{\rm \oplus}$), bulk density of $0.65^{+0.12}_{-0.11}$ (cgs), and period $18.38818^{+0.00085}_{-0.00084}$ $\rm {days}$. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M* = 1.390 ± 0.046 $\rm {M_{sun}}$, R* = 1.888 ± 0.033 $\rm {R_{sun}}$, Teff = 6075 ± 90 $\rm {K}$, and vsin i = 11.3 ± 0.5 km s−1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.more » « less