skip to main content

Title: The Extreme Stellar-signals Project. III. Combining Solar Data from HARPS, HARPS-N, EXPRES, and NEID

We present an analysis of Sun-as-a-star observations from four different high-resolution, stabilized spectrographs—HARPS, HARPS-N, EXPRES, and NEID. With simultaneous observations of the Sun from four different instruments, we are able to gain insight into the radial velocity precision and accuracy delivered by each of these instruments and isolate instrumental systematics that differ from true astrophysical signals. With solar observations, we can completely characterize the expected Doppler shift contributed by orbiting Solar System bodies and remove them. This results in a data set with measured velocity variations that purely trace flows on the solar surface. Direct comparisons of the radial velocities measured by each instrument show remarkable agreement with residual intraday scatter of only 15–30 cm s−1. This shows that current ultra-stabilized instruments have broken through to a new level of measurement precision that reveals stellar variability with high fidelity and detail. We end by discussing how radial velocities from different instruments can be combined to provide powerful leverage for testing techniques to mitigate stellar signals.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Medium: X Size: Article No. 173
["Article No. 173"]
Sponsoring Org:
National Science Foundation
More Like this

    Although instruments for measuring the radial velocities (RVs) of stars now routinely reach sub-metre per second accuracy, the detection of low-mass planets is still very challenging. The rotational modulation and evolution of spots and/or faculae can induce variations in the RVs at the level of a few m s–1 in Sun-like stars. To overcome this, a multidimensional Gaussian Process framework has been developed to model the stellar activity signal using spectroscopic activity indicators together with the RVs. A recently published computationally efficient implementation of this framework, S + LEAF 2, enables the rapid analysis of large samples of targets with sizeable data sets. In this work, we apply this framework to HARPS observations of 268 well-observed targets with precisely determined stellar parameters. Our long-term goal is to quantify the effectiveness of this framework to model and mitigate activity signals for stars of different spectral types and activity levels. In this first paper in the series, we initially focus on the activity indicators (S-index and Bisector Inverse Slope), and use them to (a) measure rotation periods for 49 slow rotators in our sample, (b) explore the impact of these results on the spin-down of middle-aged late F, G, and K stars, and (c) explore indirectly how the spot to facular ratio varies across our sample. Our results should provide valuable clues for planning future RV planet surveys such as the Terra Hunting Experiment or the PLATO ground-based follow-up observations programme, and help fine-tune current stellar structure and evolution models.

    more » « less
  2. Abstract

    We present high-precision radial velocities (RVs) from the HARPS-N spectrograph for HD 79210 and HD 79211, two M0V members of a gravitationally bound binary system. We detect a planet candidate with a period of24.4210.017+0.016days around HD 79211 in these HARPS-N RVs, validating the planet candidate originally identified in CARMENES RV data alone. Using HARPS-N, CARMENES, and RVs spanning a total of 25 yr, we further refine the planet candidate parameters toP= 24.422 ± 0.014 days,K= 3.19 ± 0.27 m s−1,Msini= 10.6 ± 1.2M, anda= 0.142 ± 0.005 au. We do not find any additional planet candidate signals in the data of HD 79211, nor do we find any planet candidate signals in HD 79210. This system adds to the number of exoplanets detected in binaries with M-dwarf members and serves as a case study for planet formation in stellar binaries.

    more » « less

    Brown dwarfs with well-measured masses, ages, and luminosities provide direct benchmark tests of substellar formation and evolutionary models. We report the first results from a direct imaging survey aiming to find and characterize substellar companions to nearby accelerating stars with the assistance of the Hipparcos–Gaia Catalog of Accelerations (HGCA). In this paper, we present a joint high-contrast imaging and astrometric discovery of a substellar companion to HD 176535 A, a K3.5V main-sequence star aged approximately $3.59_{-1.15}^{+0.87}$ Gyr at a distance of 36.99 ± 0.03 pc. In advance of our high-contrast imaging observations, we combined precision High Accuracy Radial velocity Planet Searcher (HARPS) Radial Velocities (RVs) and HGCA astrometry to predict the potential companion’s location and mass. We thereafter acquired two nights of KeckAO/NIRC2 direct imaging observations in the L′ band, which revealed a companion with a contrast of $\Delta L^{\prime }_p = 9.20\pm 0.06$ mag at a projected separation of ≈0.35 arcsec (≈13 au) from the host star. We revise our orbital fit by incorporating our dual-epoch relative astrometry using the open-source Markov chain Monte Carlo orbit fitting code orvara. We obtain a dynamical mass of $65.9_{-1.7}^{+2.0} M_{\rm Jup}$ that places HD 176535 B firmly in the brown dwarf regime. HD 176535 B is a new benchmark dwarf useful for constraining the evolutionary and atmospheric models of high-mass brown dwarfs. We found a luminosity of $\rm log(\mathit{ L}_{bol}/L_{\odot }) = -5.26\pm 0.07$ and a model-dependent effective temperature of 980 ± 35 K for HD 176535 B. We infer HD 176535 B to be a T dwarf from its mass, age, and luminosity. Our dynamical mass suggests that some substellar evolutionary models may be underestimating luminosity for high-mass T dwarfs. Given its angular separation and luminosity, HD 176535 B would make a promising candidate for Aperture Masking Interferometry with JWST and GRAVITY/Keck Planet Imager and Characterizer, and further spectroscopic characterization with instruments like the CHARIS/SCExAO/Subaru integral field spectrograph.

    more » « less
  4. Abstract

    Radial velocity (RV) measurements of transiting multiplanet systems allow us to understand the densities and compositions of planets unlike those in the solar system. Kepler-102, which consists of five tightly packed transiting planets, is a particularly interesting system since it includes a super-Earth (Kepler-102d) and a sub-Neptune-sized planet (Kepler-102e) for which masses can be measured using RVs. Previous work found a high density for Kepler-102d, suggesting a composition similar to that of Mercury, while Kepler-102e was found to have a density typical of sub-Neptune size planets; however, Kepler-102 is an active star, which can interfere with RV mass measurements. To better measure the mass of these two planets, we obtained 111 new RVs using Keck/HIRES and Telescopio Nazionale Galileo/HARPS-N and modeled Kepler-102's activity using quasiperiodic Gaussian process regression. For Kepler-102d, we report a mass upper limitMd< 5.3M(95% confidence), a best-fit massMd= 2.5 ± 1.4M, and a densityρd= 5.6 ± 3.2 g cm−3, which is consistent with a rocky composition similar in density to the Earth. For Kepler-102e we report a massMe= 4.7 ± 1.7Mand a densityρe= 1.8 ± 0.7 g cm−3. These measurements suggest that Kepler-102e has a rocky core with a thick gaseous envelope comprising 2%–4% of the planet mass and 16%–50% of its radius. Our study is yet another demonstration that accounting for stellar activity in stars with clear rotation signals can yield more accurate planet masses, enabling a more realistic interpretation of planet interiors.

    more » « less

    We present a precise characterization of the TOI-561 planetary system obtained by combining previously published data with TESS and CHEOPS photometry, and a new set of 62 HARPS-N radial velocities (RVs). Our joint analysis confirms the presence of four transiting planets, namely TOI-561 b (P = 0.45 d, R = 1.42 R⊕, M = 2.0 M⊕), c (P = 10.78 d, R = 2.91 R⊕, M = 5.4 M⊕), d (P = 25.7 d, R = 2.82 R⊕, M = 13.2 M⊕), and e (P = 77 d, R = 2.55 R⊕, M = 12.6 R⊕). Moreover, we identify an additional, long-period signal (>450 d) in the RVs, which could be due to either an external planetary companion or to stellar magnetic activity. The precise masses and radii obtained for the four planets allowed us to conduct interior structure and atmospheric escape modelling. TOI-561 b is confirmed to be the lowest density (ρb = 3.8 ± 0.5 g cm−3) ultra-short period (USP) planet known to date, and the low metallicity of the host star makes it consistent with the general bulk density-stellar metallicity trend. According to our interior structure modelling, planet b has basically no gas envelope, and it could host a certain amount of water. In contrast, TOI-561 c, d, and e likely retained an H/He envelope, in addition to a possibly large water layer. The inferred planetary compositions suggest different atmospheric evolutionary paths, with planets b and c having experienced significant gas loss, and planets d and e showing an atmospheric content consistent with the original one. The uniqueness of the USP planet, the presence of the long-period planet TOI-561 e, and the complex architecture make this system an appealing target for follow-up studies.

    more » « less