skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transcription inhibition suppresses nuclear blebbing and rupture independent of nuclear rigidity
Chromatin is an essential component of nuclear mechanical response and shape that maintains nuclear compartmentalization and function. However, major genomic functions, such as transcription activity, might also impact cell nuclear shape via blebbing and rupture through their effects on chromatin structure and dynamics. To test this idea, we inhibited transcription with several RNA polymerase II inhibitors in wild type cells and perturbed cells that present increased nuclear blebbing. Transcription inhibition suppresses nuclear blebbing for several cell types, nuclear perturbations, and transcription inhibitors. Furthermore, transcription inhibition suppresses nuclear bleb formation, bleb stabilization, and bleb-based nuclear ruptures. Interestingly, transcription inhibition does not alter either H3K9 histone modification state, nuclear rigidity, or actin compression and contraction, which typically control nuclear blebbing. Polymer simulations suggest that RNA pol II motor activity within chromatin could drive chromatin motions that deform the nuclear periphery. Our data provide evidence that transcription inhibition suppresses nuclear blebbing and rupture, separate and distinct from chromatin rigidity.  more » « less
Award ID(s):
2204312
PAR ID:
10465654
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Company of Biologists
Date Published:
Journal Name:
Journal of Cell Science
ISSN:
0021-9533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transcription of ribosomal RNA (rRNA) by RNA Polymerase I (Pol I) is often upregulated in cancer to facilitate rapid cell growth and proliferation, and has emerged as a potential target for chemotherapeutic agents. BMH-21 and Pt(II) chemotherapeutic agent oxaliplatin are well documented as inhibitors of Pol I activity, however the underlying mechanisms for this inhibition are not completely understood. Here, we applied chromatin immunoprecipitation sequencing (ChIP-seq) techniques and immunofluorescence imaging to probe the influence of oxaliplatin and BMH-21 on Pol I machinery. We demonstrate oxaliplatin and BMH-21 induce early nucleolar stress leading to the formation of “nucleolar caps” containing Pol I and upstream binding factor (UBF) which corresponds with broad reductions in ribosomal DNA (rDNA) occupancy of Pol I. Distinct occupancy patterns for the two compounds are revealed in ChIP-seq experiments. Taken together, our findings suggest that in vivo, oxaliplatin does not induce Pol I inhibition via interrupting a specific step in Pol I transcription, while treatment with BMH-21 induced unique polymerase stalling at the promoter and terminator regions of the human ribosomal RNA gene. 
    more » « less
  2. Transcripts derived from centromere repeats play a critical role in the localization and activity of kinetochore components during mitosis such that disruption of RNA polymerase II-dependent transcription compromises the fidelity of chromosome segregation. Here, we show that the retinoblastoma tumor suppressor protein (RB), a critical regulator of the G1/S cell cycle transition, additionally plays an important role in the regulation of centromere transcription during mitosis. We find that cells lacking RB experience increased RNA Polymerase II activity at mitotic centromeres and a corresponding increase in nascent RNA transcripts derived from centromere sequences. Together with high levels of centromere transcription and corresponding R-loop formation, RB-deficient cells exhibit centromere DNA breaks and local activation of ATR that correspond with increased centromere localization of Aurora B, destabilization of kinetochore-microtubule attachments, and an increase in anaphase defects. Importantly, reduction of DNA damage, ATR activity, and mitotic defects following inhibition of RNA Pol II, or targeted repression of centromere transcription through centromere tethering of Suv420h2, support that mitotic defects in RB-deficient cells are linked to centromere transcription. 
    more » « less
  3. In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion. We show that packing domains are not topologically associated domains. Instead, packing domains exist across a structure-function life cycle that couples heterochromatin and transcription in situ, explaining how heterochromatin enzyme inhibition can produce a paradoxical decrease in transcription by destabilizing domain cores. Applied to development and aging, we show the pairing of heterochromatin and transcription at myogenic genes that could be disrupted by nuclear swelling. In sum, packing domains represent a foundation to explore the interactions of chromatin and transcription at the single-cell level in human health. 
    more » « less
  4. null (Ed.)
    How migrating cells differentially adapt and respond to extracellular track geometries remains unknown. Using intravital imaging, we demonstrate that invading cells exhibit dorsoventral (top-to-bottom) polarity in vivo. To investigate the impact of dorsoventral polarity on cell locomotion through different confining geometries, we fabricated microchannels of fixed cross-sectional area, albeit with distinct aspect ratios. Vertical confinement, exerted along the dorsoventral polarity axis, induces myosin II–dependent nuclear stiffening, which results in RhoA hyperactivation at the cell poles and slow bleb-based migration. In lateral confinement, directed perpendicularly to the dorsoventral polarity axis, the absence of perinuclear myosin II fails to increase nuclear stiffness. Hence, cells maintain basal RhoA activity and display faster mesenchymal migration. In summary, by integrating microfabrication, imaging techniques, and intravital microscopy, we demonstrate that dorsoventral polarity, observed in vivo and in vitro, directs cell responses in confinement by spatially tuning RhoA activity, which controls bleb-based versus mesenchymal migration. 
    more » « less
  5. Migration through 3D constrictions can cause nuclear rupture and mislocalization of nuclear proteins, but damage to DNA remains uncertain, as does any effect on cell cycle. Here, myosin II inhibition rescues rupture and partially rescues the DNA damage marker γH2AX, but an apparent block in cell cycle appears unaffected. Co-overexpression of multiple DNA repair factors or antioxidant inhibition of break formation also exert partial effects, independently of rupture. Combined treatments completely rescue cell cycle suppression by DNA damage, revealing a sigmoidal dependence of cell cycle on excess DNA damage. Migration through custom-etched pores yields the same damage threshold, with ∼4-µm pores causing intermediate levels of both damage and cell cycle suppression. High curvature imposed rapidly by pores or probes or else by small micronuclei consistently associates nuclear rupture with dilution of stiff lamin-B filaments, loss of repair factors, and entry from cytoplasm of chromatin-binding cGAS (cyclic GMP-AMP synthase). The cell cycle block caused by constricted migration is nonetheless reversible, with a potential for DNA misrepair and genome variation. 
    more » « less