Pedagogical innovation efforts in engineering education and other STEM fields highlight some of the inherent challenges and opportunities in the process of strengthening undergraduate education. While interactive pedagogical approaches involving peer teamwork and a mix of in-person and online resources have strengthened the quality of teaching/learning, few studies provide a close-up examination of how faculty members navigate the implementation of new learning systems developed in other institutional settings. In this paper we examine factors contributing to the lack of sustained adoption of an engineering learning system called Freeform in a new academic context. We found that while students lauded the learning system’s potential for deep learning practices, the lead instructor encountered several challenges in its implementation which precluded him from adopting the system in the long term. While the lead instructor recognized the pedagogical value of Freeform in helping students engage deeply with engineering concepts, he found its implementation to differ too greatly from his traditional teaching trajectory in addition to increasing his preparation workload and having other logistical barriers. Ultimately, Freeform was not compatible with the specific institutional culture of the engineering department where the study took place. We offer some potential solutions to ameliorate issues of compatibility when attempting to diffuse and implement pedagogical systems in different institutional contexts. 
                        more » 
                        « less   
                    
                            
                            Characterizing students' subcultures in engineering and their alignment with the adoption of the freeform pedagogical system
                        
                    
    
            Abstract—This research-to-practice full paper investigates the alignment of a specific pedagogical innovation, the Freeform pedagogical system, with the student culture(s) of the mechanical engineering department of a small private college (SPC) in the upper Midwest of the United States, we ask the research question: What are the defining characteristics of the student culture or (sub)cultures in the engineering department where the Freeform system is being propagated? Based upon interviews with on-campus stakeholders (students, faculty, and staff), we constructed a 64-item survey to characterize the culture of their engineering department. We analyzed student responses using the cultural consensus theory model (CCT), a quantitative method that looks for patterns of responses to cultural statements. Grouped together, these patterns of responses indicate the values of the sub-cultures present within a participant group. Our results indicate that the best fitting model contains two student subcultures: student subculture 1 (SC1) (n = 15) and student subculture 2 (SC2) (n = 60). These two subcultures exhibit differences across a handful of items that focus on the student experience and in particular the sense of connectedness or belonging among students. Members of SC1 seem to be disconnected from both their peers and their instructors, work primarily alone, and seem to struggle to obtain access to academic assistance. SC1 members also feel overworked with (what they perceive to be) low-value-added activities, and they do not perceive alignment between how instructors teach and how they prefer to learn. In contrast, members of SC2 seem to be aligned with the institutional mission, which focuses on faculty-student relationships and learning in the community 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1915574
- PAR ID:
- 10465762
- Date Published:
- Journal Name:
- Proceedings of the Frontiers in Education
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Context: Effective reform of engineering education necessitates the widespread implementation and dissemination of pedagogical innovations globally. However, to ensure the successful propagation of these innovations, we need to better understand the adaptations that they undergo when adopted at a new institution, and the extent to which they differ from the original innovation. This includes understanding the student experience with the innovation. Purpose or Goal: This study examines the propagation and adaptation of Freeform, a learning environment for teaching an undergraduate dynamics course developed at a large Midwestern university in the United States. Specifically, our goal is to understand how students at an adopting institution used Freeform’s learning resources. Our research questions are: 1) What are the students’ archetypical patterns of resource usage at the adopting institution? 2) In what ways do those patterns differ from those of students at the original institution of Freeform? Methods We conducted a model-based clustering analysis to answer our two research questions. The analysis was conducted on survey data from 50 engineering students at the Freeform adopting institution. This data articulated how frequently students used nine different resources of the Freeform ecosystem. Outcomes: Our analysis identified 4 resource-usage patterns in the Freeform adopting institution in comparison to 9 patterns for students at the institution where Freeform originated. In the Freeform adopting institution, the most frequent resources that students utilized were Teaching Assistants (TAs) and other students who were not enrolled in the course. This contrasts with the original institution where students relied mostly on the course lecturebook and their classmates. Conclusion: This study highlights the importance of taking into consideration the differences across institutions when propagating pedagogical innovations such as Freeform. Our results suggest that instructors should anticipate those differences so that the adoption and onboarding process can be optimized for success.more » « less
- 
            Abstract Background The growing understanding of the oppressive inequities that exist in postsecondary education has led to an increasing need for culturally relevant pedagogy. Researchers have found evidence that beliefs about the nature of knowledge predict pedagogical practices. Culturally relevant pedagogy supports students in ways that leverage students’ own cultures through three tenets: academic success, cultural competence, and sociopolitical consciousness. If STEM practitioners believe that their disciplines are culture-free, they may not enact culturally relevant pedagogy in their courses. We investigated how and in what forms 40 faculty from mathematics, physics, chemistry, and biology departments at Hispanic-Serving Institutions enacted culturally relevant pedagogy. We used the framework of practical rationality to understand how epistemological beliefs about the nature of their discipline combined with their institutional context impacted instructors’ decision to enact practices aligning with the three tenets of culturally relevant pedagogy. Results In total, 35 instructors reported using practices that aligned with the academic success tenet, nine instructors with the cultural competence tenet, and one instructor with the sociopolitical consciousness tenet. Instructors expressed and even lauded their disciplines’ separation from culture while simultaneously expressing instructional decisions that aligned with culturally relevant pedagogy. Though never asked directly, six instructors made statements reflecting a “culture-free” belief about knowledge in their discipline such as “To me, mathematics has no color.” Five of those instructors also described altering their teaching in ways that aligned with the academic success tenet. The framework of practical rationality helped explain how the instructors’ individual obligation (to the needs of individual students) and interpersonal obligation (to the social environment of the classroom) played a role in those decisions. Conclusions Instructors’ ability to express two contradictory views may indicate that professional development does not have to change an instructor’s epistemological beliefs about their discipline to convince them of the value of enacting culturally relevant pedagogy. We propose departmental changes that could enable instructors to decide to cultivate students’ cultural competence and sociopolitical consciousness. Our findings highlight the need for future research investigating the impacts of culturally relevant pedagogical content knowledge on students’ experiences.more » « less
- 
            A 2019 report from the National Academies on Minority Serving Institutions (MSIs) concluded that MSIs need to change their culture to successfully serve students with marginalized racial and/or ethnic identities. The report recommends institutional responsiveness to meet students “where they are,” metaphorically, creating supportive campus environments and providing tailored academic and social support structures. In recent years, the faculty, staff, and administrators at California State University, Los Angeles have made significant efforts to enhance student success through multiple initiatives including a summer bridge program, first-year in engineering program, etc. However, it has become clear that more profound changes are needed to create a culture that meets students “where they are.” In 2020, we were awarded NSF support for Eco-STEM, an initiative designed to change a system that demands "college-ready" students into one that is "student-ready." Aimed at shifting the deficit mindset prevailing in engineering education, the Eco-STEM project embraces an asset-based ecosystem model that thinks of education as cultivation, and ideas as seeds we are planting, rather than a system of standards and quality checks. This significant paradigm and culture transformation is accomplished through: 1) The Eco-STEM Faculty Fellows’ Community of Practice (CoP), which employs critically reflective dialogue[ ][ ] to enhance the learning environment using asset-based learner-centered instructional approaches; 2) A Leadership CoP with department chairs and program directors that guides cultural change at the department/program level; 3) A Facilitators’ CoP that prepares facilitators to lead, sustain, update, and expand the Faculty and Leadership CoPs; 4) Reform of the teaching evaluation system to sustain the cultural changes. This paper presents the progress and preliminary findings of the Eco-STEM project. During the first project year, the project team formulated the curriculum for the Faculty CoP with a focus on inclusive pedagogy, community cultural wealth, and community building, developed a classroom peer observation tool to provide formative data for teaching reflection, and designed research inquiry tools. The latter investigates the following research questions: 1) To what extent do the Eco-STEM CoPs effectively shift the mental models of participants from a factory-like model to an ecosystem model of education? 2) To what extent does this shift support an emphasis on the assets of our students, faculty, and staff members and, in turn, allow for enhanced motivation, excellence and success? 3) To what extent do new faculty assessment tools designed to provide feedback that reflects ecosystem-centric principles and values allow for individuals within the system to thrive? In Fall 2021, the first cohort of Eco-STEM Faculty Fellows were recruited, and rich conversations and in-depth reflections in our CoP meetings indicated Fellows’ positive responses to both the CoP curriculum and facilitation practices. This paper offers a work-in-progress introduction to the Eco-STEM project, including the Faculty CoP, the classroom peer observation tool, and the proposed research instruments. We hope this work will cultivate broader conversations within the engineering education research community about cultural change in engineering education and methods towards its implementation.more » « less
- 
            This work presents a case study of a team of students and faculty working to increase the diversity of their department through cultural change. We focus on the perspective of the two faculty change leaders organizing this team, who received training and continued support by Departmental Action Leadership Institutes (DALIs). DALIs are workshops led by the Effective Practices for Physics Programs (EP3) team that prepare faculty members to lead change efforts in their local departments by forming teams based on the Departmental Action Team (DAT) model. Concurrent to change leaders' participation in DALI, the DAT pursues a change effort to address internal issues relating to undergraduate education. In this work, we look at how one DAT approaches the practice of "Students as Partners'' (SaP), a pedagogical practice that re-positions the relationship between educators and students in the endeavor of learning. While most efforts of SaP illustrated in the literature center curriculum, assessment, teaching, and research as areas of collaboration, this particular DAT used SaP in their efforts to increase the enrollment and retention of underrepresented students in their department. Through a series of interviews with change leaders and observations of DAT meetings, we document the pre-existing and emerging departmental cultures of partnering with students Additionally, we describe the culture of SaP on the DAT that appears to be operating as the transition between these pre-existing and emerging cultures . Finally, we discuss the elements present that enabled a potentially productive attempt at cultural change through SaP.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    