Here we present an analysis of 14 transit light curves of the hot Jupiter HAT-P-54 b. Thirteen of our datasets were obtained with the 6-inch MicroObservatory telescope, Cecilia, and one was measured with the 61-inch Kuiper Telescope. We used the EXOplanet Transit Interpretation Code (EXOTIC) to reduce 49 datasets in order to update the planet’s ephemeris to a mid-transit time of 2460216.95257 ± 0.00022 BJD_TBD and an updated orbital period of 3.79985363 ± 0.00000037 days. These results improve the mid-transit uncertainty by 70.27% from the most recent ephemeris update. The updated mid-transit time can help to ensure the efficient use of expensive, large ground- and space-based telescope missions in the future. This result demonstrates that amateur astronomers and citizen scientists can provide meaningful, cost-efficient, crowd-sourcing observations using ground-based telescopes to further refine current mid-transit times and orbital periods.
more »
« less
13 New Light Curves and Updated Mid-Transit Time and Period for Hot Jupiter WASP-104 b with EXOTIC
Using the EXOplanet Transit Interpretation Code (EXOTIC), we reduced 52 sets of images of WASP-104 b, a Hot Jupiter-class exoplanet orbiting WASP-104, in order to obtain an updated mid-transit time (ephemeris) and orbital period for the planet. We performed this reduction on images taken with a 6-inch telescope of the Center for Astrophysics | Harvard & Smithsonian MicroObservatory. Of the reduced light curves, 13 were of sufficient accuracy to be used in updating the ephemerides for WASP-104b, meeting or exceeding the three-sigma standard for determining a significant detection. Our final mid-transit value was 2457805.170208 ± 0.000036 BJD_TBD and the final period value was 1.75540644 ± 0.00000016 days. The true significance of our results is in their derivation from image sets gathered over time by a small, ground-based telescope as part of the Exoplanet Watch citizen science initiative, and their competitive results to an ephemeris generated from data gathered by the TESS telescope. We use these results to further show how such techniques can be employed by amateur astronomers and citizen scientists to maximize the efficacy of larger telescopes by reducing the use of expensive observation time. The work done in the paper was accomplished as part of the first fully online Course-Based Undergraduate Research Experience (CURE) for astronomy majors in the only online Bachelor of Science program in Astronomical and Planetary Sciences.
more »
« less
- Award ID(s):
- 2121225
- PAR ID:
- 10465915
- Date Published:
- Journal Name:
- The Journal of the American Association of Variable Star Observers
- Volume:
- 51
- ISSN:
- 0271-9053
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Never before has the detection and characterization of exoplanets via transit photometry been as promising and feasible as it is now, due to the increasing breadth and sensitivity of time domain optical surveys. Past works have made use of phase-folded stellar lightcurves in order to study the properties of exoplanet transits because this provides the highest signal that a transit is present at a given period and ephemeris. Characterizing transits on an individual, rather than phase-folded, basis is much more challenging due to the often low signal-to-noise ratio of lightcurves, missing data, and low sampling rates. However, by phase folding a lightcurve we implicitly assume that all transits have the same expected properties, and lose all information about the nature and variability of the transits. We miss the natural variability in transit shapes, or even the deliberate or inadvertent modification of transit signals by an extraterrestrial civilization (for example, via laser emission or orbiting megastructures). In this work, we develop an algorithm to search stellar lightcurves for individual anomalous (in timing or depth) transits, and we report the results of that search for 218 confirmed transiting exoplanet systems from Kepler.more » « less
-
Abstract We report the discovery of TOI-2180 b, a 2.8 M J giant planet orbiting a slightly evolved G5 host star. This planet transited only once in Cycle 2 of the primary Transiting Exoplanet Survey Satellite (TESS) mission. Citizen scientists identified the 24 hr single-transit event shortly after the data were released, allowing a Doppler monitoring campaign with the Automated Planet Finder telescope at Lick Observatory to begin promptly. The radial velocity observations refined the orbital period of TOI-2180 b to be 260.8 ± 0.6 days, revealed an orbital eccentricity of 0.368 ± 0.007, and discovered long-term acceleration from a more distant massive companion. We conducted ground-based photometry from 14 sites spread around the globe in an attempt to detect another transit. Although we did not make a clear transit detection, the nondetections improved the precision of the orbital period. We predict that TESS will likely detect another transit of TOI-2180 b in Sector 48 of its extended mission. We use giant planet structure models to retrieve the bulk heavy-element content of TOI-2180 b. When considered alongside other giant planets with orbital periods over 100 days, we find tentative evidence that the correlation between planet mass and metal enrichment relative to stellar is dependent on orbital properties. Single-transit discoveries like TOI-2180 b highlight the exciting potential of the TESS mission to find planets with long orbital periods and low irradiation fluxes despite the selection biases associated with the transit method.more » « less
-
Abstract Ultra-hot Jupiters (UHJs) are among the best targets for atmospheric characterization at high spectral resolution. Resolving their transmission spectra as a function of orbital phase offers a unique window into the 3D nature of these objects. In this work, we present three transits of the UHJ WASP-121b observed with Gemini-S/IGRINS. For the first time, we measure the phase-dependent absorption signals of CO and H2O in the atmosphere of an exoplanet, and we find that they are different. While the blueshift of CO increases during the transit, the absorption lines of H2O become less blueshifted with phase, and even show a redshift in the second half of the transit. These measurements reveal the distinct spatial distributions of both molecules across the atmospheres of UHJs. Also, we find that the H2O signal is absent in the first quarter of the transit, potentially hinting at cloud formation on the evening terminator of WASP-121b. To further interpret the absorption trails of CO and H2O, as well as the Doppler shifts of Fe previously measured with VLT/ESPRESSO, we compare the data to simulated transits of WASP-121b. To this end, we post-process the outputs of the global circulation models with a 3D Monte-Carlo radiative transfer code. Our analysis shows that the atmosphere of WASP-121b is subject to atmospheric drag, as previously suggested by small hotspot offsets inferred from phase-curve observations. Our study highlights the importance of phase-resolved spectroscopy in unravelling the complex atmospheric structure of UHJs and sets the stage for further investigations into their chemistry and dynamics.more » « less
-
null (Ed.)ABSTRACT We report on the discovery and validation of a two-planet system around a bright (V = 8.85 mag) early G dwarf (1.43 R⊙, 1.15 M⊙, TOI 2319) using data from NASA’s Transiting Exoplanet Survey Satellite (TESS). Three transit events from two planets were detected by citizen scientists in the month-long TESS light curve (sector 25), as part of the Planet Hunters TESS project. Modelling of the transits yields an orbital period of $$11.6264 _{ - 0.0025 } ^ { + 0.0022 }$$ d and radius of $$3.41 _{ - 0.12 } ^ { + 0.14 }$$ R⊕ for the inner planet, and a period in the range 19.26–35 d and a radius of $$5.83 _{ - 0.14 } ^ { + 0.14 }$$ R⊕ for the outer planet, which was only seen to transit once. Each signal was independently statistically validated, taking into consideration the TESS light curve as well as the ground-based spectroscopic follow-up observations. Radial velocities from HARPS-N and EXPRES yield a tentative detection of planet b, whose mass we estimate to be $$11.56 _{ - 6.14 } ^ { + 6.58 }$$ M⊕, and allow us to place an upper limit of 27.5 M⊕ (99 per cent confidence) on the mass of planet c. Due to the brightness of the host star and the strong likelihood of an extended H/He atmosphere on both planets, this system offers excellent prospects for atmospheric characterization and comparative planetology.more » « less
An official website of the United States government

