Ice wedges, which are ubiquitous in permafrost areas, play a significant role in the evolution of permafrost landscapes, influencing the topography and hydrology of these regions. In this paper, we combine a detailed multi-generational, interdisciplinary, and international literature review along with our own field experiences to explore the development of low-centered ice-wedge polygons and their orthogonal networks. Low-centered polygons, a type of ice-wedge polygonal ground characterized by elevated rims and lowered wet central basins, are critical indicators of permafrost conditions. The formation of these features has been subject to numerous inconsistencies and debates since their initial description in the 1800s. The development of elevated rims is attributed to different processes, such as soil bulging due to ice-wedge growth, differential frost heave, and the accumulation of vegetation and peat. The transition of low-centered polygons to flat-centered, driven by processes like peat accumulation, aggradational ice formation, and frost heave in polygon centers, has been generally overlooked. Low-centered polygons occur in deltas, on floodplains, and in drained-lake basins. There, they are often arranged in orthogonal networks that comprise a complex system. The prevailing explanation of their formation does not match with several field studies that practically remain unnoticed or ignored. By analyzing controversial subjects, such as the degradational or aggradational nature of low-centered polygons and the formation of orthogonal ice-wedge networks, this paper aims to clarify misconceptions and present a cohesive overview of lowland terrain ice-wedge dynamics. The findings emphasize the critical role of ice wedges in shaping Arctic permafrost landscapes and their vulnerability to ongoing climatic and landscape changes. 
                        more » 
                        « less   
                    
                            
                            Disparate permafrost terrain changes after a large flood observed from space
                        
                    
    
            Abstract The 2015 spring flood of the Sagavanirktok River inundated large swaths of tundra as well as infrastructure near Prudhoe Bay, Alaska. Its lasting impact on permafrost, vegetation, and hydrology is unknown but compels attention in light of changing Arctic flood regimes. We combined InSAR and optical satellite observations to quantify subdecadal permafrost terrain changes and identify their controls. While the flood locally induced quasi‐instantaneous ice‐wedge melt, much larger areas were characterized by subtle, spatially variable post‐flood changes. Surface deformation from 2015 to 2019 estimated from ALOS‐2 and Sentinel‐1 InSAR varied substantially within and across terrain units, with greater subsidence on average in flooded locations. Subsidence exceeding 5 cm was locally observed in inundated ice‐rich units and also in inactive floodplains. Overall, subsidence increased with deposit age and thus ground ice content, but many flooded ice‐rich units remained stable, indicating variable drivers of deformation. On average, subsiding ice‐rich locations showed increases in observed greenness and wetness. Conversely, many ice‐poor floodplains greened without deforming. Ice wedge degradation in flooded locations with elevated subsidence was mostly of limited intensity, and the observed subsidence largely stopped within 2 years. Based on remote sensing and limited field observations, we propose that the disparate subdecadal changes were influenced by spatially variable drivers (e.g., sediment deposition, organic layer), controls (ground ice and its degree of protection), and feedback processes. Remote sensing helps quantify the heterogeneous interactions between permafrost, vegetation, and hydrology across permafrost‐affected fluvial landscapes. Interdisciplinary monitoring is needed to improve predictions of landscape dynamics and to constrain sediment, nutrient, and carbon budgets. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10466022
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Permafrost and Periglacial Processes
- Volume:
- 34
- Issue:
- 4
- ISSN:
- 1045-6740
- Format(s):
- Medium: X Size: p. 451-466
- Size(s):
- p. 451-466
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In 2007, the Anaktuvuk River fire burned more than 1000 km2of arctic tundra in northern Alaska, ~ 50% of which occurred in an area with ice-rich syngenetic permafrost (Yedoma). By 2014, widespread degradation of ice wedges was apparent in the Yedoma region. In a 50 km2area, thaw subsidence was detected across 15% of the land area in repeat airborne LiDAR data acquired in 2009 and 2014. Updating observations with a 2021 airborne LiDAR dataset show that additional thaw subsidence was detected in < 1% of the study area, indicating stabilization of the thaw-affected permafrost terrain. Ground temperature measurements between 2010 and 2015 indicated that the number of near-surface soil thawing-degree-days at the burn site were 3 × greater than at an unburned control site, but by 2022 the number was reduced to 1.3 × greater. Mean annual ground temperature of the near-surface permafrost increased by 0.33 °C/yr in the burn site up to 7-years post-fire, but then cooled by 0.15 °C/yr in the subsequent eight years, while temperatures at the control site remained relatively stable. Permafrost cores collected from ice-wedge troughs (n = 41) and polygon centers (n = 8) revealed the presence of a thaw unconformity, that in most cases was overlain by a recovered permafrost layer that averaged 14.2 cm and 18.3 cm, respectively. Taken together, our observations highlight that the initial degradation of ice-rich permafrost following the Anaktuvuk River tundra fire has been followed by a period of thaw cessation, permafrost aggradation, and terrain stabilization.more » « less
- 
            The frequency and persistence of tidal inundation varies along the coastal terrestrial-aquatic interface, from frequently inundated wetlands to rarely inundated upland forests. This inundation gradient controls soil and sediment biogeochemistry and influence the exchange of soils and sediments from terrestrial to aquatic domains. Although a rich literature exist on studies of the influence of tidal waters on the biogeochemistry of coastal ecosystem soils, few studies have experimentally addressed the reverse question: How do soils (or sediments) from different coastal ecosystems influence the biogeochemistry of the tidal waters that inundate them? To better understand initial responses of coastal waters that flood coastal wetlands and uplands, we conducted short-term laboratory experiments where seawater was amended with sediments and soils collected across regional gradients of inundation exposure (i.e., frequently to rarely inundated) for 14 sites across the Mid-Atlantic, USA. Measured changes in dissolved oxygen and greenhouse gas concentrations were used to calculate gas consumption or production rates occurring during seawater exposure to terrestrial materials. We also measured soil and water physical and chemical properties to explore potential drivers. We observed higher oxygen consumption rates for seawater incubated with soils/sediments from frequently inundated locations and higher carbon dioxide production for seawater incubated with soils from rarely inundated transect locations. Incubations with soil from rarely inundated sites produced the highest global warming potential, primarily driven by carbon dioxide and secondarily by nitrous oxide. We also found environmental drivers of gas rates varied notably between transect locations. Our findings indicate that seawater responses to soil and sediment inputs across coastal terrestrial-aquatic interfaces exhibit some consistent patterns and high intra- and inter-site variability, suggesting potential biogeochemical feedback loops as inundation regimes shift inland.more » « less
- 
            null (Ed.)In response to increasing Arctic temperatures, ice-rich permafrost landscapes are undergoing rapid changes. In permafrost lowlands, polygonal ice wedges are especially prone to degradation. Melting of ice wedges results in deepening troughs and the transition from low-centered to high-centered ice-wedge polygons. This process has important implications for surface hydrology, as the connectivity of such troughs determines the rate of drainage for these lowland landscapes. In this study, we present a comprehensive, modular, and highly automated workflow to extract, to represent, and to analyze remotely sensed ice-wedge polygonal trough networks as a graph (i.e., network structure). With computer vision methods, we efficiently extract the trough locations as well as their geomorphometric information on trough depth and width from high-resolution digital elevation models and link these data within the graph. Further, we present and discuss the benefits of graph analysis algorithms for characterizing the erosional development of such thaw-affected landscapes. Based on our graph analysis, we show how thaw subsidence has progressed between 2009 and 2019 following burning at the Anaktuvuk River fire scar in northern Alaska, USA. We observed a considerable increase in the number of discernible troughs within the study area, while simultaneously the number of disconnected networks decreased from 54 small networks in 2009 to only six considerably larger disconnected networks in 2019. On average, the width of the troughs has increased by 13.86%, while the average depth has slightly decreased by 10.31%. Overall, our new automated approach allows for monitoring ice-wedge dynamics in unprecedented spatial detail, while simultaneously reducing the data to quantifiable geometric measures and spatial relationships.more » « less
- 
            Abstract. Rapid Arctic climate warming, amplified relative to lower-latitude regions, has led to permafrost thaw and associated thermokarst processes. Recent work has shown permafrost is a rich source of ice-nucleating particles (INPs) that can initiate ice formation in supercooled liquid clouds. Since the phase of Arctic clouds strongly affects the surface energy budget, especially over ice-laden surfaces, characterizing INP sources in this region is critical. For the first time, we provide a large-scale survey of potential INP sources in tundra terrain where thermokarst processes are active and relate to INPs in the air. Permafrost, seasonally thawed active layer, ice wedge, vegetation, water, and aerosol samples were collected near Utqiaġvik, Alaska, in late summer and analyzed for their INP contents. Permafrost was confirmed as a rich source of INPs that was enhanced near the coast. Sensitivity to heating revealed differences in INPs from similar sources, such as the permafrost and active layer. Water, vegetation, and ice wedge INPs had the highest heat-labile percentage. The aerosol likely contained a mixture of known and unsurveyed INP types that were inferred as biological. Arctic water bodies were shown to be potential important links of sources to the atmosphere in thermokarst regions. Therefore, a positive relationship found with total organic carbon considering all water bodies gives a mechanism for future parameterization as permafrost continues to thaw and drive regional landscape shifts.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
