skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mobility-On-Demand Transportation: A System for Microtransit and Paratransit Operations
New rideshare and shared-mobility services have transformed urban mobility in recent years. Therefore, transit agencies are looking for ways to adapt to this rapidly changing environment. In this space, ridepooling has the potential to improve efficiency and reduce costs by allowing users to share rides in high-capacity vehicles and vans. Most transit agencies already operate various ridepooling services including microtransit and paratransit. However, the objectives and constraints for implementing these services vary greatly between agencies. This brings multiple challenges. First, off-the-shelf ridepooling formulations must be adapted for real-world conditions and constraints. Second, the lack of modular and reusable software makes it hard to implement and evaluate new ridepooling algorithms and approaches in real-world settings. Therefore, we propose an on-demand transportation scheduling software for microtransit and paratransit services. This software is aimed at transit agencies looking to incorporate state-of-the-art rideshare and ridepooling algorithms in their everyday operations. We provide management software for dispatchers and mobile applications for drivers and users. Lastly, we discuss the challenges in adapting state-of-the-art methods to real-world operations.  more » « less
Award ID(s):
1952011
PAR ID:
10466140
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM/IEEE 14th International Conference on Cyber-Physical Systems (with CPS-IoT Week
Page Range / eLocation ID:
260 to 261
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many transit agencies operating paratransit and microtransit ser-vices have to respond to trip requests that arrive in real-time, which entails solving hard combinatorial and sequential decision-making problems under uncertainty. To avoid decisions that lead to signifi-cant inefficiency in the long term, vehicles should be allocated to requests by optimizing a non-myopic utility function or by batching requests together and optimizing a myopic utility function. While the former approach is typically offline, the latter can be performed online. We point out two major issues with such approaches when applied to paratransit services in practice. First, it is difficult to batch paratransit requests together as they are temporally sparse. Second, the environment in which transit agencies operate changes dynamically (e.g., traffic conditions can change over time), causing the estimates that are learned offline to become stale. To address these challenges, we propose a fully online approach to solve the dynamic vehicle routing problem (DVRP) with time windows and stochastic trip requests that is robust to changing environmental dynamics by construction. We focus on scenarios where requests are relatively sparse-our problem is motivated by applications to paratransit services. We formulate DVRP as a Markov decision process and use Monte Carlo tree search to evaluate actions for any given state. Accounting for stochastic requests while optimizing a non-myopic utility function is computationally challenging; indeed, the action space for such a problem is intractably large in practice. To tackle the large action space, we leverage the structure of the problem to design heuristics that can sample promising actions for the tree search. Our experiments using real-world data from our partner agency show that the proposed approach outperforms existing state-of-the-art approaches both in terms of performance and robustness. 
    more » « less
  2. COVID-19 has radically transformed urban travel behavior throughout the world. Agencies have had to provide adequate service while navigating a rapidly changing environment with reduced revenue. As COVID-19-related restrictions are lifted, transit agencies are concerned about their ability to adapt to changes in ridership behavior and public transit usage. To aid their becoming more adaptive to sudden or persistent shifts in ridership, we addressed three questions: To what degree has COVID-19 affected fixed-line public transit ridership and what is the relationship between reduced demand and -vehicle trips? How has COVID-19 changed ridership patterns and are they expected to persist after restrictions are lifted? Are there disparities in ridership changes across socioeconomic groups and mobility-impaired riders? Focusing on Nashville and Chattanooga, TN, ridership demand and vehicle trips were compared with anonymized mobile location data to study the relationship between mobility patterns and transit usage. Correlation analysis and multiple linear regression were used to investigate the relationship between socioeconomic indicators and changes in transit ridership, and an analysis of changes in paratransit demand before and during COVID-19. Ridership initially dropped by 66% and 65% over the first month of the pandemic for Nashville and Chattanooga, respectively. Cellular mobility patterns in Chattanooga indicated that foot traffic recovered to a greater degree than transit ridership between mid-April and the last week in June, 2020. Education-level had a statistically significant impact on changes in fixed-line bus transit, and the distribution of changes in demand for paratransit services were similar to those of fixed-line bus transit. 
    more » « less
  3. Paratransit services are indispensable for vulnerable road users, especially for the elderly and the disabled who lack other available mobility options or face lower accessibility to public transit systems. There are some recurrent disturbances that would be simpler to predict and, it is reasonable suspicion that there exists a significant relationship between the spatiotemporal characteristics of a location and the amount of potential delay. Therefore, this study proposes the incorporation of dwell time uncertainty in paratransit operation systems. It will use temporal multimodal multivariate learning (TMML) and the contextual bandit (CB) to estimate the impact of features on loading time. 
    more » « less
  4. Vehicle routing problems (VRPs) can be divided into two major categories: offline VRPs, which consider a given set of trip requests to be served, and online VRPs, which consider requests as they arrive in real-time. Based on discussions with public transit agencies, we identify a real-world problem that is not addressed by existing formulations: booking trips with flexible pickup windows (e.g., 3 hours) in advance (e.g., the day before) and confirming tight pickup windows (e.g., 30 minutes) at the time of booking. Such a service model is often required in paratransit service settings, where passengers typically book trips for the next day over the phone. To address this gap between offline and online problems, we introduce a novel formulation, the offline vehicle routing problem with online bookings. This problem is very challenging computationally since it faces the complexity of considering large sets of requests—similar to offline VRPs—but must abide by strict constraints on running time—similar to online VRPs. To solve this problem, we propose a novel computational approach, which combines an anytime algorithm with a learning-based policy for real-time decisions. Based on a paratransit dataset obtained from our partner transit agency, we demonstrate that our novel formulation and computational approach lead to significantly better outcomes in this service setting than existing algorithms. 
    more » « less
  5. This paper describes a newly launched project that will produce a new approach to public microtransit for underserved communities. Public microtransit cannot rely on pricing signals to manage demand, and current approaches face the challenges of simultaneously being underutilized and overextended. This project conceives of the setting as a sociotechnical system. Its main idea is to engage users through AI agents in conjunction with platform constraints to find solutions that purely technical conceptions cannot find. The project was specified over an intense series of discussions with key stakeholders (riders, city government, and nongovernmental agencies) and brings together expertise in the disciplines of AI, Operations Research, Urban Planning, Psychology, and Community Development. The project will culminate in a pilot study, results from which will facilitate the transfer of its technology to additional communities. 
    more » « less