skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Calibrating Real-World City Traffic Simulation Model Using Vehicle Speed Data
Large-scale traffic simulations are necessary for the planning, design, and operation of city-scale transportation systems. These simulations enable novel and complex transportation technology and services such as optimization of traffic control systems, supporting on-demand transit, and redesigning regional transit systems for better energy efficiency and emissions. For a city-wide simulation model, big data from multiple sources such as Open Street Map (OSM), traffic surveys, geo-location traces, vehicular traffic data, and transit details are integrated to create a unique and accurate representation. However, in order to accurately identify the model structure and have reliable simulation results, these traffic simulation models must be thoroughly calibrated and validated against real-world data. This paper presents a novel calibration approach for a city-scale traffic simulation model based on limited real-world speed data. The simulation model runs a microscopic and mesoscopic realistic traffic simulation from Chattanooga, TN (US) for a 24-hour period and includes various transport modes such as transit buses, passenger cars, and trucks. The experiment results presented demonstrate the effectiveness of our approach for calibrating large-scale traffic networks using only real-world speed data. This paper presents our proposed calibration approach that utilizes 2160 real-world speed data points, performs sensitivity analysis of the simulation model to input parameters, and genetic algorithm for optimizing the model for calibration.  more » « less
Award ID(s):
1952011
PAR ID:
10466142
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2023 IEEE International Conference on Smart Computing (SMARTCOMP)
Page Range / eLocation ID:
303 to 308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. When electrified transit systems make grid aware choices, improved social welfare is achieved by scheduling charging at low grid impact locations and times causing reduced loss, minimal power quality issues and reduced grid stress. Electrifying transit fleet has numerous challenges like non availability of buses during charging, varying charging costs, etc., that are related the electric grid behavior. However, transit systems do not have access to the information about the co-evolution of the grid’s power flow and therefore cannot account for the power grid’s needs in its day to day operation. In this paper we propose a framework of transportation-grid co-simulation analyzing the spatio-temporal interaction between the transit operations with electric buses and the power distribution grid. Real-world data for a day’s traffic from Chattanooga city’s transit system is simulated in SUMO and integrated with a realistic distribution grid simulation (using GridLAB-D) to understand the grid impact due to the transit electrification. Charging information is obtained from the transportation simulation to feed into grid simulation to assess the impact of charging. We also discuss the impact to the grid with higher degree of Transit electrification that further necessitates such an integrated Transportation-Grid co-simulation to operate the integrated system optimally. Our future work includes extending the platform for optimizing the charging and trip assignment operations. 
    more » « less
  2. Urban anomalies have a large impact on passengers' travel behavior and city infrastructures, which can cause uncertainty on travel time estimation. Understanding the impact of urban anomalies on travel time is of great value for various applications such as urban planning, human mobility studies and navigation systems. Most existing studies on travel time have been focused on the total riding time between two locations on an individual transportation modality. However, passengers often take different modes of transportation, e.g., taxis, subways, buses or private vehicles, and a significant portion of the travel time is spent in the uncertain waiting. In this paper, we study the fine-grained travel time patterns in multiple transportation systems under the impact of urban anomalies. Specifically, (i) we investigate implicit components, including waiting and riding time, in multiple transportation systems; (ii) we measure the impact of real-world anomalies on travel time components; (iii) we design a learning-based model for travel time component prediction with anomalies. Different from existing studies, we implement and evaluate our measurement framework on multiple data sources including four city-scale transportation systems, which are (i) a 14-thousand taxicab network, (ii) a 13-thousand bus network, (iii) a 10-thousand private vehicle network, and (iv) an automatic fare collection system for a public transit network (i.e., subway and bus) with 5 million smart cards. 
    more » « less
  3. Public-transit systems face a number of operational challenges: (a) changing ridership patterns requiring optimization of fixed line services, (b) optimizing vehicle-to-trip assignments to reduce maintenance and operation codes, and (c) ensuring equitable and fair coverage to areas with low ridership. Optimizing these objectives presents a hard computational problem due to the size and complexity of the decision space. State-of-the-art methods formulate these problems as variants of the vehicle routing problem and use data-driven heuristics for optimizing the procedures. However, the evaluation and training of these algorithms require large datasets that provide realistic coverage of various operational uncertainties. This paper presents a dynamic simulation platform, called Transit-Gym, that can bridge this gap by providing the ability to simulate scenarios, focusing on variation of demand models, variations of route networks, and variations of vehicle-to-trip assignments. The central contribution of this work is a domain-specific language and associated experimentation tool-chain and infrastructure to enable subject-matter experts to intuitively specify, simulate, and analyze large-scale transit scenarios and their parametric variations. Of particular significance is an integrated microscopic energy consumption model that also helps to analyze the energy cost of various transit decisions made by the transportation agency of a city. 
    more » « less
  4. null (Ed.)
    Public-transit systems face a number of operational challenges: (a) changing ridership patterns requiring optimization of fixed line services, (b) optimizing vehicle-to-trip assignments to reduce maintenance and operation codes, and (c) ensuring equitable and fair coverage to areas with low ridership. Optimizing these objectives presents a hard computational problem due to the size and complexity of the decision space. State-of-the-art methods formulate these problems as variants of the vehicle routing problem and use data-driven heuristics for optimizing the procedures. However, the evaluation and training of these algorithms require large datasets that provide realistic coverage of various operational uncertainties. This paper presents a dynamic simulation platform, called Transit-Gym, that can bridge this gap by providing the ability to simulate scenarios, focusing on variation of demand models, variations of route networks, and variations of vehicle-to-trip assignments. The central contribution of this work is a domain-specific language and associated experimentation tool-chain and infrastructure to enable subject-matter experts to intuitively specify, simulate, and analyze large-scale transit scenarios and their parametric variations. Of particular significance is an integrated microscopic energy consumption model that also helps to analyze the energy cost of various transit decisions made by the transportation agency of a city. 
    more » « less
  5. null (Ed.)
    Public-transit systems face a number of operational challenges: (a) changing ridership patterns requiring optimization of fixed line services, (b) optimizing vehicle-to-trip assignments to reduce maintenance and operation codes, and (c) ensuring equitable and fair coverage to areas with low ridership. Optimizing these objectives presents a hard computational problem due to the size and complexity of the decision space. State-of-the-art methods formulate these problems as variants of the vehicle routing problem and use data-driven heuristics for optimizing the procedures. However, the evaluation and training of these algorithms require large datasets that provide realistic coverage of various operational uncertainties. This paper presents a dynamic simulation platform, called \textsc{Transit-Gym}, that can bridge this gap by providing the ability to simulate scenarios, focusing on variation of demand models, variations of route networks, and variations of vehicle-to-trip assignments. The central contribution of this work is a domain-specific language and associated experimentation tool-chain and infrastructure to enable subject-matter experts to intuitively specify, simulate, and analyze large-scale transit scenarios and their parametric variations. Of particular significance is an integrated microscopic energy consumption model that also helps to analyze the energy cost of various transit decisions made by the transportation agency of a city. 
    more » « less