skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Addressing APC Data Sparsity in Predicting Occupancy and Delay of Transit Buses: A Multitask Learning Approach
Public transit is a vital mode of transportation in urban areas, and its efficiency is crucial for the daily commute of millions of people. To improve the reliability and predictability of transit systems, researchers have developed separate single-task learning models to predict the occupancy and delay of buses at the stop or route level. However, these models provide a narrow view of delay and occupancy at each stop and do not account for the correlation between the two. We propose a novel approach that leverages broader generalizable patterns governing delay and occupancy for improved prediction. We introduce a multitask learning toolchain that takes into account General Transit Feed Specification feeds, Automatic Passenger Counter data, and contextual temporal and spatial information. The toolchain predicts transit delay and occupancy at the stop level, improving the accuracy of the predictions of these two features of a trip given sparse and noisy data. We also show that our toolchain can adapt to fewer samples of new transit data once it has been trained on previous routes/trips as compared to state-of-the-art methods. Finally, we use actual data from Chattanooga, Tennessee, to validate our approach. We compare our approach against the state-of-the-art methods and we show that treating occupancy and delay as related problems improves the accuracy of the predictions. We show that our approach improves delay prediction significantly by as much as 4% in F1 scores while producing equivalent or better results for occupancy.  more » « less
Award ID(s):
1952011
PAR ID:
10466155
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2023 IEEE International Conference on Smart Computing (SMARTCOMP)
Page Range / eLocation ID:
17 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability to accurately predict public transit ridership demand benefits passengers and transit agencies. Agencies will be able to reallocate buses to handle under or over-utilized bus routes, improving resource utilization, and passengers will be able to adjust and plan their schedules to avoid overcrowded buses and maintain a certain level of comfort. However, accurately predicting occupancy is a non-trivial task. Various reasons such as heterogeneity, evolving ridership patterns, exogenous events like weather, and other stochastic variables, make the task much more challenging. With the progress of big data, transit authorities now have access to real-time passenger occupancy information for their vehicles. The amount of data generated is staggering. While there is no shortage in data, it must still be cleaned, processed, augmented, and merged before any useful information can be generated. In this paper, we propose the use and fusion of data from multiple sources, cleaned, processed, and merged together, for use in training machine learning models to predict transit ridership. We use data that spans a 2-year period (2020-2022) incorporating transit, weather, traffic, and calendar data. The resulting data, which equates to 17 million observations, is used to train separate models for the trip and stop level prediction. We evaluate our approach on real-world transit data provided by the public transit agency of Nashville, TN. We demonstrate that the trip level model based on Xgboost and the stop level model based on LSTM outperform the baseline statistical model across the entire transit service day. 
    more » « less
  2. Unpredictability is one of the top reasons that prevent people from using public transportation. To improve the on-time performance of transit systems, prior work focuses on updating schedule periodically in the long-term and providing arrival delay prediction in real-time. But when no real-time transit and traffic feed is available (e.g., one day ahead), there is a lack of effective contextual prediction mechanism that can give alerts of possible delay to commuters. In this paper, we propose a generic tool-chain that takes standard General Transit Feed Specification (GTFS) transit feeds and contextual information (recurring delay patterns before and after big events in the city and the contextual information such as scheduled events and forecasted weather conditions) as inputs and provides service alerts as output. Particularly, we utilize shared route segment networks and multi-task deep neural networks to solve the data sparsity and generalization issues. Experimental evaluation shows that the proposed toolchain is effective at predicting severe delay with a relatively high recall of 76% and F1 score of 55% 
    more » « less
  3. null (Ed.)
    Public transit agencies are focused on making their fixed-line bus systems more energy efficient by introducing electric (EV) and hybrid (HV) vehicles to their eets. However, because of the high upfront cost of these vehicles, most agencies are tasked with managing a mixed-fleet of internal combustion vehicles (ICEVs), EVs, and HVs. In managing mixed-fleets, agencies require accurate predictions of energy use for optimizing the assignment of vehicles to transit routes, scheduling charging, and ensuring that emission standards are met. The current state-of-the-art is to develop separate neural network models to predict energy consumption for each vehicle class. Although different vehicle classes’ energy consumption depends on a varied set of covariates, we hypothesize that there are broader generalizable patterns that govern energy consumption and emissions. In this paper, we seek to extract these patterns to aid learning to address two problems faced by transit agencies. First, in the case of a transit agency which operates many ICEVs, HVs, and EVs, we use multi-task learning (MTL) to improve accuracy of forecasting energy consumption. Second, in the case where there is a significant variation in vehicles in each category, we use inductive transfer learning (ITL) to improve predictive accuracy for vehicle class models with insufficient data. As this work is to be deployed by our partner agency, we also provide an online pipeline for joining the various sensor streams for xed-line transit energy prediction. We find that our approach outperforms vehicle-specific baselines in both the MTL and ITL settings. 
    more » « less
  4. Abstract SummaryComputational methods to predict protein–protein interaction (PPI) typically segregate into sequence-based ‘bottom-up’ methods that infer properties from the characteristics of the individual protein sequences, or global ‘top-down’ methods that infer properties from the pattern of already known PPIs in the species of interest. However, a way to incorporate top-down insights into sequence-based bottom-up PPI prediction methods has been elusive. We thus introduce Topsy-Turvy, a method that newly synthesizes both views in a sequence-based, multi-scale, deep-learning model for PPI prediction. While Topsy-Turvy makes predictions using only sequence data, during the training phase it takes a transfer-learning approach by incorporating patterns from both global and molecular-level views of protein interaction. In a cross-species context, we show it achieves state-of-the-art performance, offering the ability to perform genome-scale, interpretable PPI prediction for non-model organisms with no existing experimental PPI data. In species with available experimental PPI data, we further present a Topsy-Turvy hybrid (TT-Hybrid) model which integrates Topsy-Turvy with a purely network-based model for link prediction that provides information about species-specific network rewiring. TT-Hybrid makes accurate predictions for both well- and sparsely-characterized proteins, outperforming both its constituent components as well as other state-of-the-art PPI prediction methods. Furthermore, running Topsy-Turvy and TT-Hybrid screens is feasible for whole genomes, and thus these methods scale to settings where other methods (e.g. AlphaFold-Multimer) might be infeasible. The generalizability, accuracy and genome-level scalability of Topsy-Turvy and TT-Hybrid unlocks a more comprehensive map of protein interaction and organization in both model and non-model organisms. Availability and implementationhttps://topsyturvy.csail.mit.edu. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  5. Urban public transit planning is crucial in reducing traffic congestion and enabling green transportation. However, there is no systematic way to integrate passengers' personal preferences in planning public transit routes and schedules so as to achieve high occupancy rates and efficiency gain of ride-sharing. In this paper, we take the first step tp exact passengers' preferences in planning from history public transit data. We propose a data-driven method to construct a Markov decision process model that characterizes the process of passengers making sequential public transit choices, in bus routes, subway lines, and transfer stops/stations. Using the model, we integrate softmax policy iteration into maximum entropy inverse reinforcement learning to infer the passenger's reward function from observed trajectory data. The inferred reward function will enable an urban planner to predict passengers' route planning decisions given some proposed transit plans, for example, opening a new bus route or subway line. Finally, we demonstrate the correctness and accuracy of our modeling and inference methods in a large-scale (three months) passenger-level public transit trajectory data from Shenzhen, China. Our method contributes to smart transportation design and human-centric urban planning. 
    more » « less