skip to main content

This content will become publicly available on September 27, 2024

Title: Dibenzannulated peri -acenoacenes from anthanthrene derivatives
A series of dibenzannulated phenyl-annulated [4,2] peri -acenoacenes have been synthesized in three straightforward steps from 4,10-dibromoanthanthrone (vat orange 3). The phenyl bisannulation of [4,2] peri -acenoacene provides extra stability by increasing the overall aromatic character of the molecules, and allows for a 45–80% increase of the molar extinction coefficient ( ε ) compared to their [5,2] peri -acenoacene isomers. Depending on the substituents attached to the π-conjugated core, some derivatives exhibit strong aggregation in the solid state with association constant ( K a ) up to 255 M −1 , resulting in a significant broadening of the absorption spectrum and a substantial decrease of the bandgap value (more than 0.3 V) from solution to the solid state. One [4,2] peri -acenoacene derivative was doubly reduced using cesium and the crystal structure of the resulting salt has been obtained. Field-effect transistors showing a temperature-dependent hole mobility have been tested.  more » « less
Award ID(s):
2003411 1834750
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Page Range / eLocation ID:
10184 to 10193
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two‐coordinate carbene Cu(Ι) amide complexes with sterically bulky groups such as the diisopropyl phenyl (dipp) on the carbenes have been shown to have comparable performance to the phosphorescent emitters bearing heavy atoms such as iridium and platinum. These bulky groups enforce a coplanar molecular structure and suppress the nonradiative decay rates. Here, three different two‐coordinate Cu(Ι) complexes were investigated that bear a common thiazole carbene, 3‐(2,6‐diisopropylphenyl)‐4,5‐dimethylthiazol‐2‐ylidene, with only a single dipp group, and carbazolyl ligands with substituents of varying steric bulkorthoto N. These substituents have a negligible impact on luminescence energies of the complexes but serve to modulate the rotation barriers along the metal–ligand coordinate bond. The geometric arrangement of ligands (syn‐ oranti‐conformer) in complexes with alkyl substituents were found to differ, beingsynin the solid state versusantiin solution as revealed by crystallographic analysis and nuclear magnetic resonance spectroscopy. In addition, calculations were performed to determine potential energy surfaces for different conformations of the three complexes to provide a theoretical evaluation of rotation barriers around the metal–ligand bond axis. The relationship between rotation barriers and photophysical properties demonstrate that rates for nonradiative decay decrease with increasing bulk of the substituents on the carbazolyl ligand.

    more » « less
  2. null (Ed.)
    Chemical reduction of several cycloparaphenylenes (CPPs) ranging in size from [8]CPP to [12]CPP has been investigated with potassium metal in THF. The X-ray diffraction characterization of the resulting doubly-reduced [ n ]CPPs provided a unique series of carbon nanohoops with increasing dimensions and core flexibility for the first comprehensive structural analysis. The consequences of electron acquisition by a [ n ]CPP core have been analyzed in comparison with the neutral parents. The addition of two electrons to the cyclic carbon framework of [ n ]CPPs leads to the characteristic elliptic core distortion and facilitates the internal encapsulation of sizable cationic guests. Molecular and solid-state structure changes, alkali metal binding and unique size-dependent host abilities of the [ n ]CPP 2− series with n = 6–12 are discussed. This in-depth analysis opens new perspectives in supramolecular chemistry of [ n ]CPPs and promotes their applications in size-selective guest encapsulation and chemical separation. 
    more » « less
  3. Abstract

    Little attention has been focused on diradical and zwitterionic photoperoxides formed from nitrosamine compounds. Here, an attempt is made to probe the electronic character of the nitrooxide intermediate formed in photochemical reactions with triplet oxygen (3O2). Theoretical studies have been conducted to screenpara‐substituted phenyl nitrosamines. In particular, we find that electron‐withdrawing substituents produce low‐lying triplet nitrooxide diradicals. A clear electronic dependence in theS0T1andS0S1energy gaps of nitrooxides was found using Hammett plots. Computed geometries show a twisted diradical triplet nitrooxide moiety, which contrasts to the nearly flat singlet zwitterionic ground state nitrooxide moiety; analyses of charges (natural bond order), molecular orbitals (HOMO/LUMO) and spin densities enable these assignments. Calculations predict the former triplet species is photogenerated initially from nitrosamine with O2. The conversion of the triplet nitrooxide diradical to the singlet ground state is an example where longer‐lived zwitterionic nitrooxide structures become possible. The reaction mechanism is consistent with a zwitterionic ground state nitrooxide playing an important role in the bimolecular oxygen‐transfer reaction with phosphine and phosphite trapping agents as has been observed experimentally.

    more » « less
  4. null (Ed.)
    The morphology development of polymer-based blends, such as those used in organic photovoltaic (OPV) systems, typically arrests in a state away from equilibrium – how far from equilibrium this is will depend on the materials chemistry and the selected assembly parameters/environment. As a consequence, small changes during the blend assembly alters the solid-structure development from solution and, in turn, the final device performance. Comparing an open-cage ketolactam fullerene with the prototypical [6,6]-phenyl-C₆₁-butyric acid methyl ester in blends with poly[2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT), we demonstrate that experimentally established, non-equilibrium temperature/composition phase diagrams can be useful beyond rationalization of optimum blend composition for OPV device performance. Indeed, they can be exploited as tools for rapid, qualitative structure-property mapping, providing insights into why apparent similar donor:acceptor blends display different optoelectronic processes resulting from changes in the phase-morphology formation induced by the different chemistries of the fullerenes. 
    more » « less
  5. Abstract

    ipso‐Arylative ring‐opening polymerization of 2‐bromo‐8‐aryl‐8H‐indeno[2,1‐b]thiophen‐8‐ol monomers proceeds to Mnup to 9 kg mol−1with conversion of the monomer diarylcarbinol groups to pendent conjugated aroylphenyl side chains (2‐benzoylphenyl or 2‐(4‐hexylbenzoyl)phenyl), which influence the optical and electronic properties of the resulting polythiophenes. Poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to have lower frontier orbital energy levels (HOMO/LUMO=−5.9/−4.0 eV) than poly(3‐hexylthiophene) owing to the electron‐withdrawing ability of the aryl ketone side chains. The electron mobility (ca. 2×10−3 cm2 V−1 s−1) for poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to be significantly higher than the hole mobility (ca. 8×10−6 cm2 V−1 s−1), which suggests such polymers are candidates for n‐type organic semiconductors. Density functional theory calculations suggest that backbone distortion resulting from side‐chain steric interactions could be a key factor influencing charge mobilities.

    more » « less