skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Preliminary Analysis of Identity Development in the Figured Worlds of High-Achieving, Low-Income Engineering Students
The ongoing lack of diversity in STEM fields has been described as both: a) a critical issue with a detrimental impact on the United States’ ability to compete with global innovation (Chen, 2013) and b) a systemic issue that excludes certain groups of people from opportunities for economic mobility and job security (Wait & McDonald, 2019). Historically excluded groups, such as women, Black/African Americans, Latin Americans, and economically disadvantaged individuals, continue to be in the minority in STEM (Carnevale et al., 2021). Through the years of research on historically excluded groups, researchers have asserted the importance of developing an engineering identity in determining later success in engineering (Allen & Eisenhart, 2017; Kang et al., 2019; Stipanovic & Woo, 2017). With only 8% of all engineering students entering higher education from low income backgrounds (NCES, 2016; Major et. al, 2018), these students often face significant barriers to their success (Chen, 2013; Hoxby & Avery, 2012), yet there has been very little attention given to them in the research historically. Our study seeks to address the gap related to this population and support the developing understanding of how high achieving, low income students form an engineering identity, as well as the intersectionality and salience of their other socio-cultural identities. Using the theoretical framework of figured worlds (Holland et al., 1998; Waide-James & Schwartz, 2019), we sought to explore what factors shaped the formation of an engineering identity for high achieving, low income college students participating in an engineering scholarship program. Specifically, our research questions were: 1) What factors shape the formation of engineering identity for high achieving, low income students participating in an engineering scholarship program? and 2) How salient are other social identities in the formation of their engineering identity? A constructivist grounded theory (Charmaz, 2014) design guided our selection of individual interviews and focus groups as data collection tools, allowing us to tailor our interview questions and shape our programming around the needs of participants. NSF SSTEM-sponsored program activities that could shape the figured world of participants included intentional mentoring, cohort-based seminars, targeted coursework in design courses, and connecting students to internships and co-ops. Emerging themes for our preliminary data analysis reveal the importance of peer relationships, professional mentorship, and cultural wealth, including social capital. Preliminary results from this study have the potential to increase understanding of how to best support the success of high achieving, low income college students in engineering programs, including the implementation of targeted interventions and supports, as well as shed further light on the skills they use to overcome systemic barriers.  more » « less
Award ID(s):
1834034
PAR ID:
10466340
Author(s) / Creator(s):
Date Published:
Journal Name:
2023 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Full Paper: Involvement, Identity, and Success in an NSF-funded STEM Access Program In the United States, attrition in STEM fields has been a point of growing concern. The National Science Foundation (NSF) funded a variety of programs aimed at bolstering access and success for STEM students (National Academy of Sciences, 2011; Olson & Riordan, 2012). Though few access programs evaluate involvement, student success literature evidences a clear relationship between involvement and success (Astin, 1999; Mayhew et al., 2016). Accordingly, our phenomenological study explored how high-achieving, low-income STEM students in an NSF funded STEM Access Program at Baylor University perceive and experience involvement and success in light of their multiple identities. Baylor University’s ECS Scholars Program currently supports two cohorts of 11 students pursuing degrees in the School of Engineering and Computer Science. As a part of the program, Scholars are engaged in student and faculty mentoring which allows them to meaningfully connect with a support network. In addition, students attend monthly seminars designed to help support their success in and outside of the classroom. These students’ experiences were explored via 60 to 90-minute in-depth, semi-structured interviews. Interviews were transcribed, coded, and themed by the research team. Alternate data collection methods—including campus mapping, photo elicitation, and identity wheel construction exercises—complemented interview data and added additional depth and insight to student statements. Our collective analysis revealed that, in essence, involvement is an arena in which high-achieving, low-income STEM students prioritize and live out salient identities in alignment with their understandings of success. Such findings inform recommendations concerning how faculty and staff may broaden and reframe understandings of involvement to more effectively support the success of STEM students in similar access programs. 
    more » « less
  2. Participation in field experiences has been shown to increase students’ confidence, scientific identity, retention, and academic performance (Beltran et al., 2020; Zavaleta et al., 2020). This is particularly true for students from historically excluded groups in ecology and evolutionary biology (EEB). For the purposes of this paper and the novel funding program described herein, field experiences are learning and research opportunities in natural settings that provide students with hands-on, discipline-specific practice and experience (e.g., Morales et al. 2020). 
    more » « less
  3. This paper describes findings on interviews conducted to Hispanic engineering students interested in participating in an S-STEM fellowship program at our institution. The program seeks to increase the retention, persistence, and success of Low-Income Academically Talented Students (LIATS) at the College of Engineering (CoE). Specifically, this program integrates elements from Lent’s et al. Social Cognitive Career Theory and Tinto’s Departure Model in conjunction with a scholarship program to establish an intervention model to be further institutionalized at the CoE, if proven to be effective. Specifically, this paper focuses on findings during the recruitment and selection process. An exploratory study was conducted guided by the following research question: What are the success expectations of LIATS participating on the proposed fellowship program? 
    more » « less
  4. IRE STEM Scholars program contributes to the national need for well-educated STEM professionals by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students. The IRE STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with a Bachelor of Science degree in engineering and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce; it is during this semester that students receive the S-STEM scholarship. During the last two years of their education, IRE students work in paid engineering co-ops, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project financially supports low-income students during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project provides personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and subjective wellbeing (or mental and physical health). This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? Currently in its second year, the project has supported 20 students, including 6 students on co-op. These six students have been interviewed on their sense of belonging in engineering during their co-op experiences, and have provided multiple survey data points describing IRE students’ experiences in co-op and overall sense of belonging. These IRE STEM Scholars program participant-specific data along with survey data documenting the co-op experiences of all IRE students describe how co-op experiences can be used to provide a financially responsible pathway to an engineering degree for low-income, high achieving students. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less
  5. We are facing a national challenge of low retention rates for STEM-interested students. At the University of Washington Tacoma (UWT), a public, predominantly undergraduate, minority-serving institution (Asian-American, Native American, Pacific Islander, AANAPISI), only 28% of high achieving (high school GPA>3.0), STEM-interested at entry, Pell-eligible, first-time-in-college (FTIC) students undergraduates have entered a STEM major by the beginning of their 2nd yr, and the proportion is significantly lower for PEERs (persons excluded from STEM due to ethnicity or race [Asai, 2020]) at only 16%, representing a substantial equity gap. To address this problem, we developed the Achieving Change in our Communities for Equity and Student Success (ACCESS) in STEM Program. Supported by an NSF S-STEM grant since 2018, the program supports low-income, STEM-interested students by providing focused mentoring, a living learning community, a course-based research experience in their first year, and scholarships in their first two years of college. Based on the Student Persistence model of Graham et al. (2013), we hypothesized that these interventions would increase retention, academic performance, and progress into and through STEM majors. Our approach builds upon existing research demonstrating the importance of early research experiences (Thiry et al., 2012) and intensive mentoring and community building, particularly in the context of AANAPISI institutions (Nguyen et al., 2018). 
    more » « less