skip to main content


Title: Sensitivity of convectively driven tropical tropopause cirrus properties to ice habits in high-resolution simulations
Abstract. Cirrus clouds that form in the tropical tropopause layer(TTL) can play a key role in vertical transport through the uppertroposphere and lower stratosphere, which can significantly impact theradiative energy budget and stratospheric chemistry. However, the lack ofrealistic representation of natural ice cloud habits in microphysicalparameterizations can lead to uncertainties in cloud-related processes andcloud–climate feedbacks. The main goal of this study is to investigate therole of different cloud regimes and the associated ice habits in regulatingthe properties of the TTL. We compare aircraft measurements from theStratoClim field campaign to a set of numerical experiments at the scale of large-eddy simulations (LESs) for the same case study that employ differentmicrophysics schemes. Aircraft measurements over the southern slopes of theHimalayas captured high ice water content (HIWC) up to 2400 ppmv and iceparticle aggregates exceeding 700 µm in size with unusually longresidence times. The observed ice particles were mainly of liquid origin,with a small amount formed in situ. The corresponding profile of ice water content (IWC) fromthe ERA5 reanalysis corroborates the presence of HIWC detrained from deep-convective plumes in the TTL but underestimates HIWC by an order ofmagnitude. In the TTL, only the scheme that predicts ice habits canreproduce the observed HIWC, ice number concentration, and bimodal iceparticle size distribution. The lower range of particle sizes is mostlyrepresented by planar and columnar habits, while the upper range isdominated by aggregates. Large aggregates with sizes between 600 and 800 µm have fall speeds of less than 20 cm s−1, which explains thelong residence time of the aggregates in the TTL. Planar ice particles ofliquid origin contribute substantially to HIWC. The columnar and aggregatehabits are in the in situ range with lower IWC and number concentrations. Forall habits, the ice number concentration increases with decreasingtemperature. For the planar ice habit, relative humidity is inverselycorrelated with fall speed. This correlation is less evident for the othertwo ice habits. In the lower range of supersaturation with respect to ice,the columnar habit has the highest fall speed. The difference in ice numberconcentration across habits can be up to 4 orders of magnitude, withaggregates occurring in much smaller numbers. We demonstrate and quantifythe linear relationship between the differential sedimentation of pristineice crystals and the size of the aggregates that form when pristine crystalscollide. The slope of this relationship depends on which pristine ice habitsediments faster. Each simulated ice habit is associated with distinctradiative and latent heating rates. This study suggests that a modelconfiguration nested down to LES scales with a microphysicalparameterization that predicts ice shape evolution is crucial to provide anaccurate representation of the microphysical properties of TTL cirrus andthus the associated (de)hydration process.  more » « less
Award ID(s):
1743753
NSF-PAR ID:
10466378
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
23
Issue:
4
ISSN:
1680-7324
Page Range / eLocation ID:
2393 to 2419
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As part of the analysis following the Seeded and Natural Orographic Wintertime Storms (SNOWIE) project, the ice water content (IWC) in ice and mixed-phase clouds is retrieved from airborne Wyoming Cloud Radar (WCR) measurements aboard the University of Wyoming King Air (UWKA), which has a suite of integrated in situ IWC, optical array probes, and remote sensing measurements, and it provides a unique dataset for this algorithm development and evaluation. A sensitivity study with different idealized ice particle habits shows that the retrieved IWC with aggregate ice particle habit agrees the best with the in situ measurement, especially in ice or ice-dominated mixed-phase clouds with a correlation coefficient (rr) of 0.91 and a bias of close to 0. For mixed-phase clouds with ice fraction ratio less than 0.8, the variances of IWC estimates increase (rr = 0.76) and the retrieved mean IWC is larger than in situ IWC by a factor of 2. This is found to be related to the uncertainty of in situ measurements, the large cloud inhomogeneity, and the retrieval assumption uncertainty. The simulated reflectivity Ze and IWC relationships assuming three idealized ice particle habits and measured particle size distributions show that hexagonal columns with the same Ze have a lower IWC than aggregates, whose Ze–IWC relation is more consistent with the observed WCR Ze and in situ IWC relation in those clouds. The 2D stereo probe (2DS) images also indicate that ice particle habit transition occurs in orographic mixed-phase clouds; hence, the retrieved IWC assuming modified gamma particle size distribution (PSD) of aggregate particles tends to have a greater bias in this kind of clouds.

     
    more » « less
  2. Abstract This study evaluates ice particle size distribution and aspect ratio φ Multi-Radar Multi-Sensor (MRMS) dual-polarization radar retrievals through a direct comparison with two legs of observational aircraft data obtained during a winter storm case from the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. In situ cloud probes, satellite, and MRMS observations illustrate that the often-observed K dp and Z DR enhancement regions in the dendritic growth layer can either indicate a local number concentration increase of dry ice particles or the presence of ice particles mixed with a significant number of supercooled liquid droplets. Relative to in situ measurements, MRMS retrievals on average underestimated mean volume diameters by 50% and overestimated number concentrations by over 100%. IWC retrievals using Z DR and K dp within the dendritic growth layer were minimally biased relative to in situ calculations where retrievals yielded −2% median relative error for the entire aircraft leg. Incorporating φ retrievals decreased both the magnitude and spread of polarimetric retrievals below the dendritic growth layer. While φ radar retrievals suggest that observed dendritic growth layer particles were nonspherical (0.1 ≤ φ ≤ 0.2), in situ projected aspect ratios, idealized numerical simulations, and habit classifications from cloud probe images suggest that the population mean φ was generally much higher. Coordinated aircraft radar reflectivity with in situ observations suggests that the MRMS systematically underestimated reflectivity and could not resolve local peaks in mean volume diameter sizes. These results highlight the need to consider particle assumptions and radar limitations when performing retrievals. significance statement Developing snow is often detectable using weather radars. Meteorologists combine these radar measurements with mathematical equations to study how snow forms in order to determine how much snow will fall. This study evaluates current methods for estimating the total number and mass, sizes, and shapes of snowflakes from radar using images of individual snowflakes taken during two aircraft legs. Radar estimates of snowflake properties were most consistent with aircraft data inside regions with prominent radar signatures. However, radar estimates of snowflake shapes were not consistent with observed shapes estimated from the snowflake images. Although additional research is needed, these results bolster understanding of snow-growth physics and uncertainties between radar measurements and snow production that can improve future snowfall forecasting. 
    more » « less
  3. Abstract

    An atmospheric river affecting Australia and the Southern Ocean on 28–29 January 2018 during the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) is analyzed using nadir‐pointing W‐band cloud radar measurements and in situ microphysical measurements from a Gulfstream‐V aircraft. The AR had a two‐band structure, with the westernmost band associated with a cold frontal boundary. The bands were primarily stratiform with distinct radar bright banding. The microphysical evolution of precipitation is described in the context of the tropical‐ and midlatitude‐sourced moisture zones above and below the 0°C isotherm, respectively, identified in Part I. In the tropical‐sourced moisture zone, ice particles at temperatures less than −8°C had concentrations on the order of 10 L−1, with habits characteristic of lower temperatures, while between −8°C and −4°C, an order of magnitude increase in ice particle concentrations was observed, with columnar habits consistent with Hallett‐Mossop secondary ice formation. Ice particles falling though the 0°C level into the midlatitude‐sourced moisture region and melting provided “seed” droplets from which subsequent growth by collision‐coalescence occurred. In this region, raindrops grew to sizes of 3 mm and precipitation rates averaged 16 mm hr−1.

     
    more » « less
  4. Abstract High Ice Water Content (HIWC) regions above tropical mesoscale convective systems are investigated using data from the second collaboration of the High Altitude Ice Crystals and High Ice Water Content projects (HAIC-HIWC) based in Cayenne, French Guiana in 2015. Observations from in-situ cloud probes on the French Falcon 20 determine the microphysical and thermodynamic properties of such regions. Data from a 2-D stereo probe and precipitation imaging probe show how statistical distributions of ice crystal mass median diameter ( MMD ), ice water content ( IWC ), and total number concentration ( N t ) for particles with maximum dimension ( D max ) > 55 μm vary with environmental conditions, temperature ( T ), and convective properties such as vertical velocity ( w ), MCS age, distance away from convective peak ( L ), and surface characteristics. IWC is significantly correlated with w , whereas MMD decreases and N t increases with decreasing T consistent with aggregation, sedimentation and vapor deposition processes at lower altitudes. MMD typically increases with IWC when IWC < 0.5 g m -3 , but decreases with IWC when IWC > 0.5 g m -3 for -15 °C ≤ T ≤ -5 °C. Trends also depend on environmental conditions, such as presence of convective updrafts that are the ice crystal source, MMD being larger in older MCSs consistent with aggregation and less injection of small crystals into anvils, and IWC s decrease with increasing L at lower T . The relationship between IWC and MMD depends on environmental conditions, with correlations decreasing with decreasing T . The strength of correlation between IWC and N t increases as T decreases. 
    more » « less
  5. Abstract. Aerosols affect cirrus formation and evolution, yet quantificationof these effects remain difficult based on in situ observations due to thecomplexity of nucleation mechanisms and large variabilities in icemicrophysical properties. This work employed a method to distinguish fiveevolution phases of cirrus clouds based on in situ aircraft-basedobservations from seven U.S. National Science Foundation (NSF) and five NASAflight campaigns. Both homogeneous and heterogeneous nucleation werecaptured in the 1 Hz aircraft observations, inferred from the distributionsof relative humidity in the nucleation phase. Using linear regressions toquantify the correlations between cirrus microphysical properties andaerosol number concentrations, we found that ice water content (IWC) and icecrystal number concentration (Ni) show strong positive correlations withlarger aerosols (>500 nm) in the nucleation phase, indicatingstrong contributions of heterogeneous nucleation when ice crystals firststart to nucleate. For the later growth phase, IWC and Ni show similarpositive correlations with larger and smaller (i.e., >100 nm)aerosols, possibly due to fewer remaining ice-nucleating particles in thelater growth phase that allows more homogeneous nucleation to occur. Both200 m and 100 km observations were compared with the nudged simulations fromthe National Center for Atmospheric Research (NCAR) Community AtmosphereModel version 6 (CAM6). Simulated aerosol indirect effects are weaker thanthe observations for both larger and smaller aerosols for in situ cirrus,while the simulated aerosol indirect effects are closer to observations inconvective cirrus. The results also indicate that simulations overestimatehomogeneous freezing, underestimate heterogeneous nucleation andunderestimate the continuous formation and growth of ice crystals as cirrusclouds evolve. Observations show positive correlations of IWC, Ni and icecrystal mean diameter (Di) with respect to Na in both the Northern and SouthernHemisphere (NH and SH), while the simulations show negative correlations inthe SH. The observations also show higher increases of IWC and Ni in the SHunder the same increase of Na than those shown in the NH, indicating highersensitivity of cirrus microphysical properties to increases of Na in the SHthan the NH. The simulations underestimate IWC by a factor of 3–30 in theearly/later growth phase, indicating that the low bias of simulated IWC wasdue to insufficient continuous ice particle formation and growth. Sucha hypothesis is consistent with the model biases of lower frequencies of icesupersaturation and lower vertical velocity standard deviation in theearly/later growth phases. Overall, these findings show that aircraftobservations can capture both heterogeneous and homogeneous nucleation, andtheir contributions vary as cirrus clouds evolve. Future model developmentis also recommended to evaluate and improve the representation of watervapor and vertical velocity on the sub-grid scale to resolve theinsufficient ice particle formation and growth after the initial nucleationevent. 
    more » « less