Structural health monitoring (SHM) is a rapidly growing field focused on detecting damage in complex systems before catastrophic failure occurs. Advanced sensor technologies are necessary to fully harness SHM in applications involving harsh or remote environments, life-critical systems, mass-production vehicles, robotic systems, and others. Fiber Bragg Grating (FBG) sensors are attractive for in-situ health monitoring due to their resistance to electromagnetic noise, ability to be multiplexed, and accurate real-time operation. Ultrasonic additive manufacturing (UAM) has been demonstrated for solid-state fabrication of 3D structures with embedded FBG sensors. In this paper, UAM-embedded FBG sensors are investigated with a focus on SHM applications. FBG sensors embedded in an aluminum matrix 3 mm from the initiation site are shown to resolve a minimum crack length of 0.286 ± 0.033 mm and track crack growth until near failure. Accurate crack detection is also demonstrated from FBGs placed 6 mm and 9 mm from the crack initiation site. Regular acrylate-coated FBG sensors are shown to repeatably work at temperatures up to 300 ∘ C once embedded with the UAM process.
more »
« less
Roadmap on measurement technologies for next generation structural health monitoring systems
Abstract Structural health monitoring (SHM) is the automation of the condition assessment process of an engineered system. When applied to geometrically large components or structures, such as those found in civil and aerospace infrastructure and systems, a critical challenge is in designing the sensing solution that could yield actionable information. This is a difficult task to conduct cost-effectively, because of the large surfaces under consideration and the localized nature of typical defects and damages. There have been significant research efforts in empowering conventional measurement technologies for applications to SHM in order to improve performance of the condition assessment process. Yet, the field implementation of these SHM solutions is still in its infancy, attributable to various economic and technical challenges. The objective of this Roadmap publication is to discuss modern measurement technologies that were developed for SHM purposes, along with their associated challenges and opportunities, and to provide a path to research and development efforts that could yield impactful field applications. The Roadmap is organized into four sections: distributed embedded sensing systems, distributed surface sensing systems, multifunctional materials, and remote sensing. Recognizing that many measurement technologies may overlap between sections, we define distributed sensing solutions as those that involve or imply the utilization of numbers of sensors geometrically organized within (embedded) or over (surface) the monitored component or system. Multi-functional materials are sensing solutions that combine multiple capabilities, for example those also serving structural functions. Remote sensing are solutions that are contactless, for example cell phones, drones, and satellites. It also includes the notion of remotely controlled robots.
more »
« less
- Award ID(s):
- 2038761
- PAR ID:
- 10466434
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Institute of Phisics (IOP)
- Date Published:
- Journal Name:
- Measurement Science and Technology
- Volume:
- 34
- Issue:
- 9
- ISSN:
- 0957-0233
- Page Range / eLocation ID:
- 093001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The field of remote sensing has undergone a remarkable shift where vast amounts of imagery are now readily available to researchers. New technologies, such as uncrewed aircraft systems, make it possible for anyone with a moderate budget to gather their own remotely sensed data, and methodological innovations have added flexibility for processing and analyzing data. These changes create both the opportunity and need to reproduce, replicate, and compare remote sensing methods and results across spatial contexts, measurement systems, and computational infrastructures. Reproducing and replicating research is key to understanding the credibility of studies and extending recent advances into new discoveries. However, reproducibility and replicability (R&R) remain issues in remote sensing because many studies cannot be independently recreated and validated. Enhancing the R&R of remote sensing research will require significant time and effort by the research community. However, making remote sensing research reproducible and replicable does not need to be a burden. In this paper, we discuss R&R in the context of remote sensing and link the recent changes in the field to key barriers hindering R&R while discussing how researchers can overcome those barriers. We argue for the development of two research streams in the field: (1) the coordinated execution of organized sequences of forward-looking replications, and (2) the introduction of benchmark datasets that can be used to test the replicability of results and methods.more » « less
-
Significant progress into the development and use of stretchable sensors for structural health monitoring (SHM) has been made in the last several years. The fusion of stretchable, adaptable sensing materials with highly specialized additive manufacturing techniques allows for the development of highly adaptive, customizable, and easily accessible sensing solutions. However, a significant portion of these works explore SHM topics at a macro level, and with a reduced focus on implementation. As such, little application or experimentation into practical sensing elements, especially those at the micro scale, have followed the advances in sensing technology. In this work, we demonstrate the application of recent developments in stretchable electronics, alongside multiple advanced additive manufacturing processes, to develop a novel flexible microscale sensor. A complex sensor is designed and printed utilizing Digital Light Processing (DLP) to directly fabricate the structure. The printed sensor is then filled with a piezoresistive sensing element of either PEDOT:PSS or carbon-based PDMS (cPDMS), which provided strain readings via resistance change. After being filled with a sensing mixture, the sensor is shown to operate as desired under large deformations. Additionally, the sensor is shown to work effectively when embedded into a separate additively manufactured part. A flexible test coupon is manufactured using the DLP AM process, and a microsensor is embedded inside the coupon structure. This sensing systems is tested in both tension and bending. These results show the feasibility of implementing both modern day AM processes and into current structural health monitoring developments into practical applications.more » « less
-
This article reviews case studies which have used remote sensing data for different aspects of flood crop loss assessment. The review systematically finds a total of 62 empirical case studies from the past three decades. The number of case studies has recently been increased because of increased availability of remote sensing data. In the past, flood crop loss assessment was very generalized and time-intensive because of the dependency on the survey-based data collection. Remote sensing data availability makes rapid flood loss assessment possible. This study groups flood crop loss assessment approaches into three broad categories: flood-intensity-based approach, crop-condition-based approach, and a hybrid approach of the two. Flood crop damage assessment is more precise when both flood information and crop condition are incorporated in damage assessment models. This review discusses the strengths and weaknesses of different loss assessment approaches. Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat are the dominant sources of optical remote sensing data for flood crop loss assessment. Remote-sensing-based vegetation indices (VIs) have significantly been utilized for crop damage assessments in recent years. Many case studies also relied on microwave remote sensing data, because of the inability of optical remote sensing to see through clouds. Recent free-of-charge availability of synthetic-aperture radar (SAR) data from Sentinel-1 will advance flood crop damage assessment. Data for the validation of loss assessment models are scarce. Recent advancements of data archiving and distribution through web technologies will be helpful for loss assessment and validation.more » « less
-
Recent developments in sensing technologies have triggered a lot of research interest in exploring novel self-powered, inexpensive, compact and flexible pressure sensors with the potential for structural health monitoring (SHM) applications. Herein, we assessed the performance of an embedded mechanoluminescent (ML) and perovskite pressure sensor that integrates the physical principles of mechanoluminescence and perovskite materials. For a continuous in-situ SHM, it is crucial to evaluate the capabilities of the sensing device when embedded into a composite structure. An experimental study of how the sensor is affected by the embedment process into a glass fiber-reinforced composite has been conducted. A series of devices with and without ML were embedded within a composite laminate, and the signal responses were collected under different conditions. We also demonstrated a successful encapsulation process in order for the device to withstand the composite manufacturing conditions. The results show that the sensor exhibits distinct signals when subjected to different load conditions and can be used for the in-situ SHM of advanced composite structures.more » « less