skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Eight Recommendations to Promote Effective Study Habits for Biology Students Enrolled in Online Courses
To achieve meaningful learning experiences in online classrooms, students must become self-regulated learners through the development of effective study habits. Currently, there is no set of recommendations to promote study habits in online biology learning environments.  more » « less
Award ID(s):
1919462
PAR ID:
10466577
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
JMBE
Date Published:
Journal Name:
Journal of Microbiology & Biology Education
Volume:
23
Issue:
1
ISSN:
1935-7877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lynch, Collin F.; Merceron, Agathe; Desmarais, Michel; Nkambou, Roger (Ed.)
    Students’ interactions with online tools can provide us with insights into their study and work habits. Prior research has shown that these habits, even as simple as the number of actions or the time spent on online platforms can distinguish between the higher performing students and low-performers. These habits are also often used to predict students’ performance in classes. One key feature of these actions that is often overlooked is how and when the students transition between different online platforms. In this work, we study sequences of student transitions between online tools in blended courses and identify which habits make the most difference between the higher and lower performing groups. While our results showed that most of the time students focus on a single tool, we were able to find patterns in their transitions to differentiate high and low performing groups. These findings can help instructors to provide procedural guidance to the students, as well as to identify harmful habits and make timely interventions. 
    more » « less
  2. Many undergraduate students encounter struggle as they navigate academic, financial, and social contexts of higher education. The transition to emergency online instruction during the Spring of 2020 due to the COVID-19 pandemic exacerbated these struggles. To assess college students’ struggles during the transition to online learning in undergraduate biology courses, we surveyed a diverse collection of students ( n = 238) at an R2 research institution in the Southeastern United States. Students were asked if they encountered struggles and whether they were able to overcome them. Based on how students responded, they were asked to elaborate on (1) how they persevered without struggle, (2) how they were able to overcome their struggles, or (3) what barriers they encountered that did not allow them to overcome their struggles. Each open-ended response was thematically coded to address salient patterns in students’ ability to either persevere or overcome their struggle. We found that during the transition to remote learning, 67% of students experienced struggle. The most reported struggles included: shifts in class format, effective study habits, time management, and increased external commitments. Approximately, 83% of those struggling students were able to overcome their struggle, most often citing their instructor’s support and resources offered during the transition as reasons for their success. Students also cited changes in study habits, and increased confidence or belief that they could excel within the course as ways in which they overcame their struggles. Overall, we found no link between struggles in the classroom and any demographic variables we measured, which included race/ethnicity, gender expression, first-generation college students, transfer student status, and commuter student status. Our results highlight the critical role that instructors play in supporting student learning during these uncertain times by promoting student self-efficacy and positive-growth mindset, providing students with the resources they need to succeed, and creating a supportive and transparent learning environment. 
    more » « less
  3. Abstract Due to the Covid‐19 pandemic, the education system worldwide faced sudden and unforeseen challenges. Many academic institutions closed their doors, forcing both educators and students to transition to Emergency Remote Teaching (ERT) for the remainder of the semester. This transition eliminated hands‐on experiences, increased workload, and altered curricula. However, these aspects, as well as students' perceptions, study habits, and performance in response to ERT remain poorly documented. This contribution describes changes in the curriculum of an undergraduate cadaver‐based laboratory, and explores students' performance, self‐perceived learning, and overall satisfaction during this educational crisis. Online content delivery for this course included both asynchronous instruction and synchronous discussion sessions. While formative assessments remained the same, online spotter examinations included short answer, multiple choice, multiple answer, ordering, and true and false questions. Despite examination grades improving 20% during ERT, students reported lower levels of learning, confidence, and engagement with the course materials when compared to the face‐to‐face portion of the class. The most prevalent challenges identified by students were those related to the loss of access to cadaver‐based learning, including difficulty identifying and visualizing structures in three dimensions, and the loss of context and sensorial cues. Flexibility in taking examinations and learning the material at their own pace were recognized as positive outcomes of the ERT transition. While the resulting student perceptions and performances are unsurprising, they offer insight into the challenges of fostering a productive learning environment in a future threatened by epidemic outbreak and economic uncertainty. 
    more » « less
  4. Engineering in early education provides the foundation for the future of innovation. Reinforcing learning and engineering habits of mind (HoM) at an early age is crucial for expanding students’ higher order thinking, potential for lifelong learning, and sense of agency in their learning experiences. HoM is defined as a set of learned or internalized dispositions that inform an individual's behaviors when confronted with challenges. This study addressed two research questions: (1) Which HoM were articulated by children as they reflected upon their participation in a home-based engineering program? (2) What patterns of the children’s vocabulary align with the HoM framework? Observational methods were used to examine young children’s reflections upon the process of completing low-stakes engineering projects in their home. The participants were 23 children ranging from kindergarten to eighth grade. After they engaged in the ill-structured engineering tasks with family members at home, children joined an online show-and-tell meeting to show their prototype to others while answering various questions about their processes, frustrations, and successes. Findings revealed “Resourcefulness,” “Adapting/Improving,” and “Systems Thinking” as the most common HoM expressed by children through the show-and-tell meetings. Additional analysis also highlighted how children's articulation of learning and engineering habits of mind were logical (i.e., analytical), confident (i.e., clout), and impersonal. Moreover, children’s words were product oriented, predominantly focusing on the materials and tools utilized to create their prototype. The significance of this study highlights how engaging in hands-on engineering projects in the home has the potential to develop children’s dispositions and ways of thinking common to engineers. 
    more » « less
  5. Retrieval practice (i.e., recalling information from memory) and elaboration (i.e., generating meaningful explanations and examples) promote learning, but students underutilize these strategies when studying. We developed a strategy-training intervention addressing prominent barriers to students’ strategy use: lack of knowledge, lack of motivation, and poor management of study time. Undergraduates in an Introductory Biology course were randomly assigned to receive the strategy-training intervention or to a healthy life habits control group. No significant differences were found between the two groups on measures of learning behavior or achievement collected across the semester, emphasizing the challenge of changing students’ learning habits. Future research should investigate strategy training with lower performing students integrated into a course. 
    more » « less