skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating comparable distances to tipping points across mutualistic systems by scaled recovery rates
The code and data for the paper 'Estimating comparable distances to tipping points across mutualistic systems by scaled recovery rates' that published on Nat. Ecol. Evol, whose DOI is 10.1038/s41559-022-01850-8  more » « less
Award ID(s):
2125326
PAR ID:
10466632
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Zenodo
Date Published:
Journal Name:
Nature ecology evolution
ISSN:
2397-334X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. {"Abstract":["Data files were used in support of the research paper titled \u201cMitigating RF Jamming Attacks at the Physical Layer with Machine Learning<\/em>" which has been submitted to the IET Communications journal.<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nAll data was collected using the SDR implementation shown here: https://github.com/mainland/dragonradio/tree/iet-paper. Particularly for antenna state selection, the files developed for this paper are located in 'dragonradio/scripts/:'<\/p>\n\n'ModeSelect.py': class used to defined the antenna state selection algorithm<\/li>'standalone-radio.py': SDR implementation for normal radio operation with reconfigurable antenna<\/li>'standalone-radio-tuning.py': SDR implementation for hyperparameter tunning<\/li>'standalone-radio-onmi.py': SDR implementation for omnidirectional mode only<\/li><\/ul>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nAuthors: Marko Jacovic, Xaime Rivas Rey, Geoffrey Mainland, Kapil R. Dandekar\nContact: krd26@drexel.edu<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nTop-level directories and content will be described below. Detailed descriptions of experiments performed are provided in the paper.<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nclassifier_training: files used for training classifiers that are integrated into SDR platform<\/p>\n\n'logs-8-18' directory contains OTA SDR collected log files for each jammer type and under normal operation (including congested and weaklink states)<\/li>'classTrain.py' is the main parser for training the classifiers<\/li>'trainedClassifiers' contains the output classifiers generated by 'classTrain.py'<\/li><\/ul>\n\npost_processing_classifier: contains logs of online classifier outputs and processing script<\/p>\n\n'class' directory contains .csv logs of each RTE and OTA experiment for each jamming and operation scenario<\/li>'classProcess.py' parses the log files and provides classification report and confusion matrix for each multi-class and binary classifiers for each observed scenario - found in 'results->classifier_performance'<\/li><\/ul>\n\npost_processing_mgen: contains MGEN receiver logs and parser<\/p>\n\n'configs' contains JSON files to be used with parser for each experiment<\/li>'mgenLogs' contains MGEN receiver logs for each OTA and RTE experiment described. Within each experiment logs are separated by 'mit' for mitigation used, 'nj' for no jammer, and 'noMit' for no mitigation technique used. File names take the form *_cj_* for constant jammer, *_pj_* for periodic jammer, *_rj_* for reactive jammer, and *_nj_* for no jammer. Performance figures are found in 'results->mitigation_performance'<\/li><\/ul>\n\nray_tracing_emulation: contains files related to Drexel area, Art Museum, and UAV Drexel area validation RTE studies.<\/p>\n\nDirectory contains detailed 'readme.txt' for understanding.<\/li>Please note: the processing files and data logs present in 'validation' folder were developed by Wolfe et al. and should be cited as such, unless explicitly stated differently. \n\tS. Wolfe, S. Begashaw, Y. Liu and K. R. Dandekar, "Adaptive Link Optimization for 802.11 UAV Uplink Using a Reconfigurable Antenna," MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM), 2018, pp. 1-6, doi: 10.1109/MILCOM.2018.8599696.<\/li><\/ul>\n\t<\/li><\/ul>\n\nresults: contains results obtained from study<\/p>\n\n'classifier_performance' contains .txt files summarizing binary and multi-class performance of online SDR system. Files obtained using 'post_processing_classifier.'<\/li>'mitigation_performance' contains figures generated by 'post_processing_mgen.'<\/li>'validation' contains RTE and OTA performance comparison obtained by 'ray_tracing_emulation->validation->matlab->outdoor_hover_plots.m'<\/li><\/ul>\n\ntuning_parameter_study: contains the OTA log files for antenna state selection hyperparameter study<\/p>\n\n'dataCollect' contains a folder for each jammer considered in the study, and inside each folder there is a CSV file corresponding to a different configuration of the learning parameters of the reconfigurable antenna. The configuration selected was the one that performed the best across all these experiments and is described in the paper.<\/li>'data_summary.txt'this file contains the summaries from all the CSV files for convenience.<\/li><\/ul>"]} 
    more » « less
  2. {"Abstract":["Data files were used in support of the research paper titled "\u201cExperimentation Framework for Wireless\nCommunication Systems under Jamming Scenarios" which has been submitted to the IET Cyber-Physical Systems: Theory & Applications journal. <\/p>\n\nAuthors: Marko Jacovic, Michael J. Liston, Vasil Pano, Geoffrey Mainland, Kapil R. Dandekar\nContact: krd26@drexel.edu<\/p>\n\n---------------------------------------------------------------------------------------------<\/p>\n\nTop-level directories correspond to the case studies discussed in the paper. Each includes the sub-directories: logs, parsers, rayTracingEmulation, results. <\/p>\n\n--------------------------------<\/p>\n\nlogs:    - data logs collected from devices under test\n    - 'defenseInfrastucture' contains console output from a WARP 802.11 reference design network. Filename structure follows '*x*dB_*y*.txt' in which *x* is the reactive jamming power level and *y* is the jaming duration in samples (100k samples = 1 ms). 'noJammer.txt' does not include the jammer and is a base-line case. 'outMedian.txt' contains the median statistics for log files collected prior to the inclusion of the calculation in the processing script. \n    - 'uavCommunication' contains MGEN logs at each receiver for cases using omni-directional and RALA antennas with a 10 dB constant jammer and without the jammer. Omni-directional folder contains multiple repeated experiments to provide reliable results during each calculation window. RALA directories use s*N* folders in which *N* represents each antenna state. \n    - 'vehicularTechnologies' contains MGEN logs at the car receiver for different scenarios. 'rxNj_5rep.drc' does not consider jammers present, 'rx33J_5rep.drc' introduces the periodic jammer, in 'rx33jSched_5rep.drc' the device under test uses time scheduling around the periodic jammer, in 'rx33JSchedRandom_5rep.drc' the same modified time schedule is used with a random jammer. <\/p>\n\n--------------------------------<\/p>\n\nparsers:    - scripts used to collect or process the log files used in the study\n        - 'defenseInfrastructure' contains the 'xputFiveNodes.py' script which is used to control and log the throughput of a 5-node WARP 802.11 reference design network. Log files are manually inspected to generate results (end of log file provides a summary). \n        - 'uavCommunication' contains a 'readMe.txt' file which describes the parsing of the MGEN logs using TRPR. TRPR must be installed to run the scripts and directory locations must be updated. \n        - 'vehicularTechnologies' contains the 'mgenParser.py' script and supporting 'bfb.json' configuration file which also require TRPR to be installed and directories to be updated. <\/p>\n\n--------------------------------<\/p>\n\nrayTracingEmulation:    - 'wirelessInsiteImages': images of model used in Wireless Insite\n            - 'channelSummary.pdf': summary of channel statistics from ray-tracing study\n            - 'rawScenario': scenario files resulting from code base directly from ray-tracing output based on configuration defined by '*WI.json' file \n            - 'processedScenario': pre-processed scenario file to be used by DYSE channel emulator based on configuration defined by '*DYSE.json' file, applies fixed attenuation measured externally by spectrum analyzer and additional transmit power per node if desired\n            - DYSE scenario file format: time stamp (milli seconds), receiver ID, transmitter ID, main path gain (dB), main path phase (radians), main path delay (micro seconds), Doppler shift (Hz), multipath 1 gain (dB), multipath 1 phase (radians), multipath 1 delay relative to main path delay (micro seconds), multipath 2 gain (dB), multipath 2 phase (radians), multipath 2 delay relative to main path delay (micro seconds)\n            - 'nodeMapping.txt': mapping of Wireless Insite transceivers to DYSE channel emulator physical connections required\n            - 'uavCommunication' directory additionally includes 'antennaPattern' which contains the RALA pattern data for the omni-directional mode ('omni.csv') and directional state ('90.csv')<\/p>\n\n--------------------------------<\/p>\n\nresults:    - contains performance results used in paper based on parsing of aforementioned log files\n <\/p>"]} 
    more » « less
  3. {"Abstract":["This dataset contains machine learning and volunteer classifications from the Gravity Spy project. It includes glitches from observing runs O1, O2, O3a and O3b that received at least one classification from a registered volunteer in the project. It also indicates glitches that are nominally retired from the project using our default set of retirement parameters, which are described below. See more details in the Gravity Spy Methods paper. <\/p>\n\nWhen a particular subject in a citizen science project (in this case, glitches from the LIGO datastream) is deemed to be classified sufficiently it is "retired" from the project. For the Gravity Spy project, retirement depends on a combination of both volunteer and machine learning classifications, and a number of parameterizations affect how quickly glitches get retired. For this dataset, we use a default set of retirement parameters, the most important of which are: <\/p>\n\nA glitches must be classified by at least 2 registered volunteers<\/li>Based on both the initial machine learning classification and volunteer classifications, the glitch has more than a 90% probability of residing in a particular class<\/li>Each volunteer classification (weighted by that volunteer's confusion matrix) contains a weight equal to the initial machine learning score when determining the final probability<\/li><\/ol>\n\nThe choice of these and other parameterization will affect the accuracy of the retired dataset as well as the number of glitches that are retired, and will be explored in detail in an upcoming publication (Zevin et al. in prep). <\/p>\n\nThe dataset can be read in using e.g. Pandas: \n```\nimport pandas as pd\ndataset = pd.read_hdf('retired_fulldata_min2_max50_ret0p9.hdf5', key='image_db')\n```\nEach row in the dataframe contains information about a particular glitch in the Gravity Spy dataset. <\/p>\n\nDescription of series in dataframe<\/strong><\/p>\n\n['1080Lines', '1400Ripples', 'Air_Compressor', 'Blip', 'Chirp', 'Extremely_Loud', 'Helix', 'Koi_Fish', 'Light_Modulation', 'Low_Frequency_Burst', 'Low_Frequency_Lines', 'No_Glitch', 'None_of_the_Above', 'Paired_Doves', 'Power_Line', 'Repeating_Blips', 'Scattered_Light', 'Scratchy', 'Tomte', 'Violin_Mode', 'Wandering_Line', 'Whistle']\n\tMachine learning scores for each glitch class in the trained model, which for a particular glitch will sum to unity<\/li><\/ul>\n\t<\/li>['ml_confidence', 'ml_label']\n\tHighest machine learning confidence score across all classes for a particular glitch, and the class associated with this score<\/li><\/ul>\n\t<\/li>['gravityspy_id', 'id']\n\tUnique identified for each glitch on the Zooniverse platform ('gravityspy_id') and in the Gravity Spy project ('id'), which can be used to link a particular glitch to the full Gravity Spy dataset (which contains GPS times among many other descriptors)<\/li><\/ul>\n\t<\/li>['retired']\n\tMarks whether the glitch is retired using our default set of retirement parameters (1=retired, 0=not retired)<\/li><\/ul>\n\t<\/li>['Nclassifications']\n\tThe total number of classifications performed by registered volunteers on this glitch<\/li><\/ul>\n\t<\/li>['final_score', 'final_label']\n\tThe final score (weighted combination of machine learning and volunteer classifications) and the most probable type of glitch<\/li><\/ul>\n\t<\/li>['tracks']\n\tArray of classification weights that were added to each glitch category due to each volunteer's classification<\/li><\/ul>\n\t<\/li><\/ul>\n\n <\/p>\n\n```\nFor machine learning classifications on all glitches in O1, O2, O3a, and O3b, please see Gravity Spy Machine Learning Classifications on Zenodo<\/p>\n\nFor the most recently uploaded training set used in Gravity Spy machine learning algorithms, please see Gravity Spy Training Set on Zenodo.<\/p>\n\nFor detailed information on the training set used for the original Gravity Spy machine learning paper, please see Machine learning for Gravity Spy: Glitch classification and dataset on Zenodo. <\/p>"]} 
    more » « less
  4. Dataset accompanying code and paper: AircraftVerse: A Large-Scale Multimodal Dataset of Aerial Vehicle Designs We present AircraftVerse, a publicly available aerial vehicle design dataset. AircraftVerse contains 27,714 diverse battery powered aircraft designs that have been evaluated using state-of-the-art physics models that characterize performance metrics such as maximum flight distance and hover-time. This repository contains: A zip file "AircraftVerse.zip", where each design_X contains: design_tree.json: The design tree describes the design topology, choice of propulsion and energy subsystems. The tree also contains continuous parameters such as wing span, wing chord and arm length.design_seq.json: A preorder traversal of the design tree and store this as design_seq.json.design_low_level.json: The most low level representation of the design. This low level representation includes significant repetition that is avoided in the tree representation through the use of symmetry.Geom.stp: CAD design for the Aircraft in composition STP format (ISO 10303 standard).cadfile.stl: CAD design for the Aircraft in stereolithographic STL file,output.json: Summary containing the UAV's performance metrics such as maximum flight distance, maximum hover time, fight distance at maximum speed, maximum current draw, and mass.trims.npy: Contains the [Distance, Flight Time, Pitch, Control Input, Thrust, Lift, Drag, Current, Power] at each evaluated trim state (velocity).pointCloud.npy: Numpy array containing the corresponding point clouds for each design. corpus_dic: The corpus of components (e.g. batteries, propellers) that make up all aircraft designs. It is structured as a dictionary of dictionaries, with the high level components: ['Servo', 'GPS', 'ESC', 'Wing', 'Sensor', 'Propeller', 'Receiver', 'Motor', 'Battery', 'Autopilot'], containing a list of dictionaries corresponding to the component type. E.g. corpus_dic['Battery']['TurnigyGraphene2200mAh3S75C'] contains the detail of this particular battery. Corresponding code for this work is included at https://github.com/SRI-CSL/AircraftVerse.  Acknowledgements: This material is based upon work supported by the United States Air Force and DARPA under Contract No. FA8750-20-C-0002.  Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force and DARPA.   
    more » « less
  5. {"Abstract":["The intended use of this archive is to facilitate meta-analysis of the Data Observation Network for Earth (DataONE, [1]). <\/p>\n\nDataONE is a distributed infrastructure that provides information about earth observation data. This dataset was derived from the DataONE network using Preston [2] between 17 October 2018 and 6 November 2018, resolving 335,213 urls at an average retrieval rate of about 5 seconds per url, or 720 files per hour, resulting in a data gzip compressed tar archive of 837.3 MB .  <\/p>\n\nThe archive associates 325,757 unique metadata urls [3] to 202,063 unique ecological metadata files [4]. Also, the DataONE search index was captured to establish provenance of how the dataset descriptors were found and acquired. During the creation of the snapshot (or crawl), 15,389 urls [5], or 4.7% of urls, did not successfully resolve. <\/p>\n\nTo facilitate discovery, the record of the Preston snapshot crawl is included in the preston-ls-* files . There files are derived from the rdf/nquad file with hash://sha256/8c67e0741d1c90db54740e08d2e39d91dfd73566ea69c1f2da0d9ab9780a9a9f . This file can also be found in the data.tar.gz at data/8c/67/e0/8c67e0741d1c90db54740e08d2e39d91dfd73566ea69c1f2da0d9ab9780a9a9f/data . For more information about concepts and format, please see [2]. <\/p>\n\nTo extract all EML files from the included Preston archive, first extract the hashes assocated with EML files using:<\/p>\n\ncat preston-ls.tsv.gz | gunzip | grep "Version" | grep -v "deeplinker" | grep -v "query/solr" | cut -f1,3 | tr '\\t' '\\n' | grep "hash://" | sort | uniq > eml-hashes.txt<\/p>\n\nextract data.tar.gz using:<\/p>\n\n~/preston-archive$$ tar xzf data.tar.gz <\/p>\n\nthen use Preston to extract each hash using something like:<\/p>\n\n~/preston-archive$$ preston get hash://sha256/00002d0fc9e35a9194da7dd3d8ce25eddee40740533f5af2397d6708542b9baa\n<eml:eml xmlns:eml="eml://ecoinformatics.org/eml-2.1.1" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:stmml="http://www.xml-cml.org/schema/stmml_1.1" packageId="doi:10.18739/A24P9Q" system="https://arcticdata.io" scope="system" xsi:schemaLocation="eml://ecoinformatics.org/eml-2.1.1 ~/development/eml/eml.xsd">\n  <dataset>\n    <alternateIdentifier>urn:x-wmo:md:org.aoncadis.www::d76bc3b5-7b19-11e4-8526-00c0f03d5b7c</alternateIdentifier>\n    <alternateIdentifier>d76bc3b5-7b19-11e4-8526-00c0f03d5b7c</alternateIdentifier>\n    <title>Airglow Image Data 2011 4 of 5</title>\n...<\/p>\n\nAlternatively, without using Preston, you can extract the data using the naming convention:<\/p>\n\ndata/[x]/[y]/[z]/[hash]/data<\/p>\n\nwhere x is the first 2 characters of the hash, y the second 2 characters, z the third 2 characters, and hash the full sha256 content hash of the EML file.<\/p>\n\nFor example, the hash hash://sha256/00002d0fc9e35a9194da7dd3d8ce25eddee40740533f5af2397d6708542b9baa can be found in the file: data/00/00/2d/00002d0fc9e35a9194da7dd3d8ce25eddee40740533f5af2397d6708542b9baa/data . For more information, see [2].<\/p>\n\nThe intended use of this archive is to facilitate meta-analysis of the DataONE dataset network. <\/p>\n\n[1] DataONE, https://www.dataone.org\n[2] https://preston.guoda.bio, https://doi.org/10.5281/zenodo.1410543 . DataONE was crawled via Preston with "preston update -u https://dataone.org".\n[3] cat preston-ls.tsv.gz | gunzip | grep "Version" | grep -v "deeplinker" | grep -v "query/solr" | cut -f1,3 | tr '\\t' '\\n' | grep -v "hash://" | sort | uniq | wc -l\n[4] cat preston-ls.tsv.gz | gunzip | grep "Version" | grep -v "deeplinker" | grep -v "query/solr" | cut -f1,3 | tr '\\t' '\\n' | grep "hash://" | sort | uniq | wc -l\n[5] cat preston-ls.tsv.gz | gunzip | grep "Version" | grep  "deeplinker" | grep -v "query/solr" | cut -f1,3 | tr '\\t' '\\n' | grep -v "hash://" | sort | uniq | wc -l<\/p>\n\nThis work is funded in part by grant NSF OAC 1839201 from the National Science Foundation.<\/p>"]} 
    more » « less