skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PopSim: An Individual-level Population Simulator for Equitable Allocation of City Resources
Historical systematic exclusionary tactics based on race have forced people of certain demographic groups to congregate in specific urban areas. Aside from the ethical aspects of such segregation, these policies have implications for the allocation of urban resources including public transportation, healthcare, and education within the cities. The initial step towards addressing these issues involves conducting an audit to assess the status of equitable resource allocation. However, due to privacy and confidentiality concerns, individual-level data containing demographic information cannot be made publicly available. By leveraging publicly available aggregated demographic statistics data, we introduce PopSim, a system for generating semi-synthetic individual-level population data with demographic information. We use PopSim to generate multiple benchmark datasets for the city of Chicago and conduct extensive statistical evaluations to validate those. We further use our datasets for several case studies that showcase the application of our system for auditing equitable allocation of city resources.  more » « less
Award ID(s):
2107290
PAR ID:
10466759
Author(s) / Creator(s):
; ;
Publisher / Repository:
Algorithmic Fairness in Artificial intelligence, Machine learning and Decision making (AFair-AMLD23) workshop at SDM
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emerging transportation modes, including car-sharing, bike-sharing, and ride-hailing, are transforming urban mobility yet have been shown to reinforce socioeconomic inequity. These services rely on accurate demand prediction, but the demand data on which these models are trained reflect biases around demographics, socioeconomic conditions, and entrenched geographic patterns. To address these biases and improve fairness, we present FairST, a fairness-aware demand prediction model for spatiotemporal urban applications, with emphasis on new mobility. We use 1D (time-varying, space-constant), 2D (space-varying, time-constant) and 3D (both time- and space-varying) convolutional branches to integrate heterogeneous features, while including fairness metrics as a form of regularization to improve equity across demographic groups. We propose two spatiotemporal fairness metrics, region-based fairness gap (RFG), applicable when demographic information is provided as a constant for a region, and individual-based fairness gap (IFG), applicable when a continuous distribution of demographic information is available. Experimental results on bike share and ride share datasets show that FairST can reduce inequity in demand prediction for multiple sensitive attributes (i.e. race, age, and education level), while achieving better accuracy than even state-of-the-art fairness-oblivious methods. 
    more » « less
  2. null (Ed.)
    A classical problem in city-scale cyber-physical systems (CPS) is resource allocation under uncertainty. Spatial-temporal allocation of resources is optimized to allocate electric scooters across urban areas, place charging stations for vehicles, and design efficient on-demand transit. Typically, such problems are modeled as Markov (or semi-Markov) decision processes. While online, offline, and decentralized methodologies have been used to tackle such problems, none of the approaches scale well for large-scale decision problems. We create a general approach to hierarchical planning that leverages structure in city-level CPS problems to tackle resource allocation under uncertainty. We use emergency response as a case study and show how a large resource allocation problem can be split into smaller problems. We then create a principled framework for solving the smaller problems and tackling the interaction between them. Finally, we use real-world data from a major metropolitan area in the United States to validate our approach. Our experiments show that the proposed approach outperforms state-of-the-art approaches used in the field of emergency response. 
    more » « less
  3. Abstract. A circular city builds upon the principles of circular economy, which keyconcepts of reduce, reuse, recycle, and recover lead to a coupling ofresources: products and by-products of one production process become theinput of another one, often in local vicinity. However, sources, types andavailable quantities of underutilised resources in cities are currently notwell documented. Therefore, there is a missing link in the information flowof the circular city between potential users and site-specific data. Toclose this gap, this study introduces the concept of a site resourceinventory in conjunction with a new information model that can manage thedata needed for advancing the circular city. A core taxonomy of terms isestablished as the foundation for the information model: the circulareconomy is defined as a network of circular economy entities which areregarded as black boxes and connected by their material and energy inputsand outputs. This study proposes a site resource inventory, which is acollection of infrastructural and building-specific parameters that assessthe suitability of urban sites for a specific circular economy entity. Aninformation model is developed to manage the data that allows the entitiesto effectively organise the allocation and use of resources within thecircular city and its material and energy flows. The application of thisinformation model was demonstrated by comparing the demand and availabilityof required alternative resources (e.g. greywater) at a hypothetical sitecomprising a commercial aquaponic facility (synergistic coupling of fish andvegetables production) and a residential building. For the implementation ofthe information model a proposal is made which uses the publicly availablegeodata infrastructure of OpenStreetMap and adopts its tag system tooperationalise the integration of circular economy data by introducing newtags. A site resource inventory has the potential to bring togetherinformation needs and it is thus intended to support companies when makingtheir business location decisions or to support local authorities in theplanning process. 
    more » « less
  4. This perspective paper highlights the potentials, limitations, and combinations of openly available Earth observation (EO) data and big data in the context of environmental research in urban areas. The aim is to build the resilience of informal settlements to climate change impacts. In particular, it highlights the types, categories, spatial and temporal scales of publicly available big data. The benefits of publicly available big data become clear when looking at issues such as the development and quality of life in informal settlements within and around major African cities. Sub-Saharan African (SSA) cities are among the fastest growing urban areas in the world. However, they lack spatial information to guide urban planning towards climate-adapted cities and fair living conditions for disadvantaged residents who mostly reside in informal settlements. Therefore, this study collected key information on freely available data such as data on land cover, land use, and environmental hazards and pressures, demographic and socio-economic indicators for urban areas. They serve as a vital resource for success of many other related local studies, such as the transdisciplinary research project “DREAMS—Developing REsilient African cities and their urban environMent facing the provision of essential urban SDGs”. In the era of exponential growth of big data analytics, especially geospatial data, their utility in SSA is hampered by the disparate nature of these datasets due to the lack of a comprehensive overview of where and how to access them. This paper aims to provide transparency in this regard as well as a resource to access such datasets. Although the limitations of such big data are also discussed, their usefulness in assessing environmental hazards and human exposure, especially to climate change impacts, are emphasised. 
    more » « less
  5. Artificial intelligence, machine learning, and algorithmic techniques in general, provide two crucial abilities with the potential to improve decision-making in the context of allocation of scarce societal resources. They have the ability to flexibly and accurately model treatment response at the individual level, potentially allowing us to better match available resources to individuals. In addition, they have the ability to reason simultaneously about the effects of matching sets of scarce resources to populations of individuals. In this work, we leverage these abilities to study algorithmic allocation of scarce societal resources in the context of homelessness. In communities throughout the United States, there is constant demand for an array of homeless services intended to address different levels of need. Allocations of housing services must match households to appropriate services that continuously fluctuate in availability, while inefficiencies in allocation could “waste” scarce resources as households will remain in-need and re-enter the homeless system, increasing the overall demand for homeless services. This complex allocation problem introduces novel technical and ethical challenges. Using administrative data from a regional homeless system, we formulate the problem of “optimal” allocation of resources given data on households with need for homeless services. The optimization problem aims to allocate available resources such that predicted probabilities of household re-entry are minimized. The key element of this work is its use of a counterfactual prediction approach that predicts household probabilities of re-entry into homeless services if assigned to each service. Through these counterfactual predictions, we find that this approach has the potential to improve the efficiency of the homeless system by reducing re-entry, and, therefore, system-wide demand. However, efficiency comes with trade-offs - a significant fraction of households are assigned to services that increase probability of re-entry. To address this issue as well as the inherent fairness considerations present in any context where there are insufficient resources to meet demand, we discuss the efficiency, equity, and fairness issues that arise in our work and consider potential implications for homeless policies. 
    more » « less