skip to main content


Title: Fairness-Aware Demand Prediction for New Mobility
Emerging transportation modes, including car-sharing, bike-sharing, and ride-hailing, are transforming urban mobility yet have been shown to reinforce socioeconomic inequity. These services rely on accurate demand prediction, but the demand data on which these models are trained reflect biases around demographics, socioeconomic conditions, and entrenched geographic patterns. To address these biases and improve fairness, we present FairST, a fairness-aware demand prediction model for spatiotemporal urban applications, with emphasis on new mobility. We use 1D (time-varying, space-constant), 2D (space-varying, time-constant) and 3D (both time- and space-varying) convolutional branches to integrate heterogeneous features, while including fairness metrics as a form of regularization to improve equity across demographic groups. We propose two spatiotemporal fairness metrics, region-based fairness gap (RFG), applicable when demographic information is provided as a constant for a region, and individual-based fairness gap (IFG), applicable when a continuous distribution of demographic information is available. Experimental results on bike share and ride share datasets show that FairST can reduce inequity in demand prediction for multiple sensitive attributes (i.e. race, age, and education level), while achieving better accuracy than even state-of-the-art fairness-oblivious methods.  more » « less
Award ID(s):
1934405 1740996
PAR ID:
10188200
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
34
Issue:
01
ISSN:
2159-5399
Page Range / eLocation ID:
1079 to 1087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    While ride-sharing has emerged as a popular form of transportation in urban areas due to its on-demand convenience, it has become a major contributor to carbon emissions, with recent studies suggesting it is 47% more carbon-intensive than personal car trips. In this paper, we examine the feasibility, costs, and carbon benefits of using electric bike-sharing---a low carbon form of ride-sharing---as a potential substitute for shorter ride-sharing trips, with the overall goal of greening the ride-sharing ecosystem. Using public datasets from New York City, our analysis shows that nearly half of the taxi and rideshare trips in New York are shorts trips of less than 3.5km, and that biking is actually faster than using a car for ultra-short trips of 2km or less. We analyze the cost and carbon benefits of different levels of ride substitution under various scenarios. We find that the additional bikes required to satisfy increased demand from ride substitution increases sub-linearly and results in 6.6% carbon emission reduction for 10% taxi ride substitution. Moreover, this reduction can be achieved through a hybrid mix that requires only a quarter of the bikes to be electric bikes, which reduces system costs. We also find that expanding bike-share systems to new areas that lack bike-share coverage requires additional investments due to the need for new bike stations and bike capacity to satisfy demand but also provides substantial carbon emission reductions. Finally, frequent station repositioning can reduce the number of bikes needed in the system by up to a third for a minimal increase in carbon emissions of 2% from the trucks required to perform repositioning, providing an interesting tradeoff between capital costs and carbon emissions. 
    more » « less
  2. null (Ed.)
    While ride-sharing has emerged as a popular form of transportation in urban areas due to its on-demand convenience, it has become a major contributor to carbon emissions, with recent studies suggesting it is 47% more carbon-intensive than personal car trips. In this paper, we examine the feasibility, costs, and carbon benefits of using electric bike-sharing—a low carbon form of ride-sharing—as a potential substitute for shorter ride-sharing trips, with the overall goal of greening the ride-sharing ecosystem. Using public datasets from New York City, our analysis shows that nearly half of the taxi and rideshare trips in New York are shorts trips of less than 3.5km, and that biking is actually faster than using a car for ultra-short trips of 2km or less. We analyze the cost and carbon benefits of different levels of ride substitution under various scenarios. We find that the additional bikes required to satisfy increased demand from ride substitution increases sub-linearly and results in 6.6% carbon emission reduction for 10% taxi ride substitution. Moreover, this reduction can be achieved through a hybrid mix that requires only a quarter of the bikes to be electric bikes, which reduces system costs. We also find that expanding bike-share systems to new areas that lack bike-share coverage requires additional investments due to the need for new bike stations and bike capacity to satisfy demand but also provides substantial carbon emission reductions. Finally, frequent station repositioning can reduce the number of bikes needed in the system by up to a third for a minimal increase in carbon emissions of 2% from the trucks required to perform repositioning, providing an interesting tradeoff between capital costs and carbon emissions. 
    more » « less
  3. As more people move back into densely populated cities, bike sharing is emerging as an important mode of urban mobility. In a typical bike-sharing system (BSS), riders arrive at a station and take a bike if it is available. After retrieving a bike, they ride it for a while, then return it to a station near their final destinations. Since space is limited in cities, each station has a finite capacity of docks, which cannot hold more bikes than its capacity. In this paper, we study BSSs with stations having a finite capacity. By an appropriate scaling of our stochastic model, we prove a mean-field limit and a central limit theorem for an empirical process of the number of stations with k bikes. The mean-field limit and the central limit theorem provide insight on the mean, variance, and sample path dynamics of large-scale BSSs. We also leverage our results to estimate confidence intervals for various performance measures such as the proportion of empty stations, the proportion of full stations, and the number of bikes in circulation. These performance measures have the potential to inform the operations and design of future BSSs. 
    more » « less
  4. We present a fairness-aware model for predicting demand for new mobility systems. Our approach, called FairST, consists of 1D, 2D and 3D convolutions to learn the spatial-temporal dynamics of a mobility system, and fairness regularizers that guide the model to make equitable predictions. We propose two fairness metrics, region-based fairness gap (RFG) and individual-based fairness gap (IFG), that measure equity gaps between social groups for new mobility systems. Experimental results on two real-world datasets demonstrate the effectiveness of the proposed model: FairST not only reduces the fairness gap by more than 80%, but achieves better accuracy than state-of-the-art but fairness-oblivious methods including LSTMs, ConvLSTMs, and 3D CNN. 
    more » « less
  5. We describe customized synthetic datasets for publishing mobility data. Private companies are providing new transportation modalities, and their data is of high value for integrative transportation research, policy enforcement, and public accountability. However, these companies are disincentivized from sharing data not only to protect the privacy of individuals (drivers and/or passengers), but also to protect their own competitive advantage. Moreover, demographic biases arising from how the services are delivered may be amplified if released data is used in other contexts. We describe a model and algorithm for releasing origin-destination histograms that removes selected biases in the data using causality-based methods. We compute the origin-destination histogram of the original dataset then adjust the counts to remove undesirable causal relationships that can lead to discrimination or violate contractual obligations with data owners. We evaluate the utility of the algorithm on real data from a dockless bike share program in Seattle and taxi data in New York, and show that these adjusted transportation datasets can retain utility while removing bias in the underlying data. 
    more » « less