skip to main content


Title: First-Choice Maximality Meets Ex-ante and Ex-post Fairness
For the assignment problem where multiple indivis- ible items are allocated to a group of agents given their ordinal preferences, we design randomized mechanisms that satisfy first-choice maximality (FCM), i.e., maximizing the number of agents as- signed their first choices, together with Pareto- efficiency (PE). Our mechanisms also provide guarantees of ex-ante and ex-post fairness. The generalizedeager Boston mechanism is ex-ante envy-free, and ex-post envy-free up to one item (EF1). The generalized probabilistic Boston mech- anism is also ex-post EF1, and satisfies ex-ante ef- ficiency instead of fairness. We also show that no strategyproof mechanism satisfies ex-post PE, EF1, and FCM simultaneously. In doing so, we expand the frontiers of simultaneously providing efficiency and both ex-ante and ex-post fairness guarantees for the assignment problem.  more » « less
Award ID(s):
2106983 2007994
PAR ID:
10466788
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IJCAI
Date Published:
Format(s):
Medium: X
Location:
Macao, China
Sponsoring Org:
National Science Foundation
More Like this
  1. In the assignment problem, the goal is to assign indivisible items to agents who have ordinal preferences, efficiently and fairly, in a strategyproof manner. In practice, first-choice maximality, i.e., assigning a maximal number of agents their top items, is often identified as an important efficiency criterion and measure of agents' satisfaction. In this paper, we propose a natural and intuitive efficiency property, favoring-eagerness-for-remaining-items (FERI), which requires that each item is allocated to an agent who ranks it highest among remaining items, thereby implying first-choice maximality. Using FERI as a heuristic, we design mechanisms that satisfy ex-post or ex-ante variants of FERI together with combinations of other desirable properties of efficiency (Pareto-efficiency), fairness (strong equal treatment of equals and sd-weak-envy-freeness), and strategyproofness (sd-weak-strategyproofness). We also explore the limits of FERI mechanisms in providing stronger efficiency, fairness, or strategyproofness guarantees through impossibility results.

     
    more » « less
  2. We study the problem of fair and efficient allocation of a set of indivisible chores to agents with additive cost functions. We consider the popular fairness notion of envy-freeness up to one good (EF1) with the efficiency notion of Pareto-optimality (PO). While it is known that EF1+PO allocations exists and can be computed in pseudo-polynomial time in the case of goods, the same problem is open for chores. Our first result is a strongly polynomial-time algorithm for computing an EF1+PO allocation for bivalued instances, where agents have (at most) two disutility values for the chores. To the best of our knowledge, this is the first non-trivial class of chores to admit an EF1+PO allocation and an efficient algorithm for its computation. We also study the problem of computing an envy-free (EF) and PO allocation for the case of divisible chores. While the existence of EF+PO allocation is known via competitive equilibrium with equal incomes, its efficient computation is open. Our second result shows that for bivalued instances, an EF+PO allocation can be computed in strongly polynomial-time. 
    more » « less
  3. We study the problem of fairly and efficiently allocating indivisible chores among agents with additive disutility functions. We consider the widely used envy-based fairness properties of EF1 and EFX in conjunction with the efficiency property of fractional Pareto-optimality (fPO). Existence (and computation) of an allocation that is simultaneously EF1/EFX and fPO are challenging open problems, and we make progress on both of them. We show the existence of an allocation that is- EF1 + fPO, when there are three agents,- EF1 + fPO, when there are at most two disutility functions,- EFX + fPO, for three agents with bivalued disutility functions.These results are constructive, based on strongly polynomial-time algorithms. We also investigate non-existence and show that an allocation that is EFX+fPO need not exist, even for two agents.

     
    more » « less
  4. Peer review is an integral component of contemporary science. While peer review focuses attention on promising and interesting science, it also encourages scientists to pursue some questions at the expense of others. Here, we use ideas from forecasting assessment to examine how two modes of peer review—ex ante review of proposals for future work and ex post review of completed science—motivate scientists to favor some questions instead of others. Our main result is that ex ante and ex post peer review push investigators toward distinct sets of scientific questions. This tension arises because ex post review allows investigators to leverage their own scientific beliefs to generate results that others will find surprising, whereas ex ante review does not. Moreover, ex ante review will favor different research questions depending on whether reviewers rank proposals in anticipation of changes to their own personal beliefs or to the beliefs of their peers. The tension between ex ante and ex post review puts investigators in a bind because most researchers need to find projects that will survive both. By unpacking the tension between these two modes of review, we can understand how they shape the landscape of science and how changes to peer review might shift scientific activity in unforeseen directions. 
    more » « less
  5. We initiate the study of fair distribution of delivery tasks among a set of agents wherein delivery jobs are placed along the vertices of a graph. Our goal is to fairly distribute delivery costs (modeled as a submodular function) among a fixed set of agents while satisfying some desirable notions of economic efficiency. We adopt well-established fairness concepts—such as envy-freeness up to one item (EF1) and minimax share (MMS)—to our setting and show that fairness is often incompatible with the efficiency notion of social optimality. Yet, we characterize instances that admit fair and socially optimal solutions by exploiting graph structures. We further show that achieving fairness along with Pareto optimality is computationally intractable. Nonetheless, we design an XP algorithm (parameterized by the number of agents) for finding MMS and Pareto optimal solutions on every tree instance, and show that the same algorithm can be modified to find efficient solutions along with EF1, when such solutions exist. We complement these results by theoretically and experimentally analyzing the price of fairness.

     
    more » « less