skip to main content


Title: The circadian clock controls temporal and spatial patterns of floral development in sunflower

Biological rhythms are ubiquitous. They can be generated by circadian oscillators, which produce daily rhythms in physiology and behavior, as well as by developmental oscillators such as the segmentation clock, which periodically produces modular developmental units. Here, we show that the circadian clock controls the timing of late-stage floret development, or anthesis, in domesticated sunflowers. In these plants, up to thousands of individual florets are tightly packed onto a capitulum disk. While early floret development occurs continuously across capitula to generate iconic spiral phyllotaxy, during anthesis floret development occurs in discrete ring-like pseudowhorls with up to hundreds of florets undergoing simultaneous maturation. We demonstrate circadian regulation of floral organ growth and show that the effects of light on this process are time-of-day dependent. Delays in the phase of floral anthesis delay morning visits by pollinators, while disruption of circadian rhythms in floral organ development causes loss of pseudowhorl formation and large reductions in pollinator visits. We therefore show that the sunflower circadian clock acts in concert with environmental response pathways to tightly synchronize the anthesis of hundreds of florets each day, generating spatial patterns on the developing capitulum disk. This coordinated mass release of floral rewards at predictable times of day likely promotes pollinator visits and plant reproductive success.

 
more » « less
Award ID(s):
1759942
NSF-PAR ID:
10466800
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
eLife
Date Published:
Journal Name:
eLife
Volume:
12
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Floral microbes, including bacteria and fungi, alter nectar quality, thus changing pollinator visitation. Conversely, pollinator visitation can change the floral microbial community.

    Most studies on dispersal of floral microbes have focused on bees, ants or hummingbirds, yet Lepidoptera are important pollinators.

    We asked (a) where are microbes present on the butterfly body, (b) do butterflies transfer microbes while foraging, and (c) how does butterfly foraging affect microbial abundance on different floret structures.

    The tarsi and proboscis had significantly more microbes than the thorax in wild‐caughtGlaucopsyche lygdamus(Lepidoptera: Lycaenidae) andSpeyeria mormonia(Lepidoptera: Nymphalidae).Glaucopsyche lygdamus, a smaller‐bodied species, had fewer microbes thanS. mormonia.

    As a marker for microbes, we used a bacterium (Rhodococcus fascians,near NCBI Y11196) isolated from aS. mormoniathat was foraging for nectar, and examined its dispersal byG. lygdamusandS. mormoniavisiting florets ofPyrrocoma crocea(Asteraceae). Microbial dispersal among florets correlated positively with bacterial abundance in the donor floret. Dispersal also depended on butterfly species, age, and bacterial load carried by the butterfly.

    Recipient florets had less bacteria than donor florets. The nectaries had more bacteria than the anthers or the stigmas, while anthers and stigmas did not differ from each other. There was no differential transmission among floral organs.

    Lepidoptera thus act as vectors of floral microbes. Including Lepidoptera is thus crucial to an understanding of plant–pollinator–microbe interactions. Future studies should consider the role of vectored microbes in lepidopteran ecology and fitness.

     
    more » « less
  2. Abstract

    Flowers are produced by floral meristems, groups of stem cells that give rise to floral organs. In grasses, including the major cereal crops, flowers (florets) are contained in spikelets, which contain one to many florets, depending on the species. Importantly, not all grass florets are developmentally equivalent, and one or more florets are often sterile or abort in each spikelet. Members of the Andropogoneae tribe, including maize (Zea mays), produce spikelets with two florets; the upper and lower florets are usually dimorphic, and the lower floret is greatly reduced compared to the upper floret. In maize ears, early development appears identical in both florets but the lower floret ultimately aborts. To gain insight into the functional differences between florets with different fates, we used laser capture microdissection coupled with RNA-sequencing to globally examine gene expression in upper and lower floral meristems in maize. Differentially expressed genes were involved in hormone regulation, cell wall, sugar, and energy homeostasis. Furthermore, cell wall modifications and sugar accumulation differed between the upper and lower florets. Finally, we identified a boundary domain between upper and lower florets, which we hypothesize is important for floral meristem activity. We propose a model in which growth is suppressed in the lower floret by limiting sugar availability and upregulating genes involved in growth repression. This growth repression module may also regulate floret fertility in other grasses and potentially be modulated to engineer more productive cereal crops.

     
    more » « less
  3. Premise

    Variation in pollinator effectiveness may contribute to pollen limitation in fragmented plant populations. In plants with multiovulate ovaries, the number of conspecific pollen grains per stigma often predicts seed set and is used to quantify pollinator effectiveness. In the Asteraceae, however, florets are uniovulate, which suggests that the total amount of pollen deposited per floret may not measure pollinator effectiveness. We examined two aspects of pollinator effectiveness—effective pollen deposition and effective pollen movement—for insects visitingEchinacea angustifolia, a composite that is pollen limited in small, isolated populations.

    Methods

    We filmed insect visits toEchinaceain two prairie restorations and used these videos to quantify behavior that might predict effectiveness. To quantify effective pollen deposition, we used the number of styles shriveled per visit. To quantify effective pollen movement, we conducted paternity analysis on a subset of offspring and measured the pollen movement distance between mates.

    Results

    Effective pollen deposition varied among taxa.Andrena helianthiformis, a Heliantheae oligolege, was the most effective taxon, shriveling more than twice the proportion of styles as all other visitors. Differences in visitor behavior on a flowering head did not explain variation in effective pollen deposition, nor did flowering phenology. On average, visitors moved pollen 16 m between plants, and this distance did not vary among taxa.

    Conclusions

    Andrena helianthiformisis an important pollinator ofEchinacea. Variation in reproductive fitness ofEchinaceain fragmented habitat may result, in part, from the abundance of this species.

     
    more » « less
  4. Abstract

    The cyanobacteriumSynechococcus elongatusis a model organism for the study of circadian rhythms. It is naturally competent for transformation—that is, it takes up DNA from the environment, but the underlying mechanisms are unclear. Here, we use a genome-wide screen to identify genes required for natural transformation inS. elongatus, including genes encoding a conserved Type IV pilus, genes known to be associated with competence in other bacteria, and others. Pilus biogenesis occurs daily in the morning, while natural transformation is maximal when the onset of darkness coincides with the dusk circadian peak. Thus, the competence state in cyanobacteria is regulated by the circadian clock and can adapt to seasonal changes of day length.

     
    more » « less
  5. Summary

    Circadian clocks allow organisms to predict environmental changes caused by the rotation of the Earth. Although circadian rhythms are widespread among different taxa, the core components of circadian oscillators are not conserved and differ between bacteria, plants, animals and fungi. Stramenopiles are a large group of organisms in which circadian rhythms have been only poorly characterized and no clock components have been identified. We have investigated cell division and molecular rhythms inNannochloropsisspecies. In the four strains tested, cell division occurred principally during the night period under diel conditions; however, these rhythms damped within 2–3 days after transfer to constant light. We developed firefly luciferase reporters for the long‐term monitoring ofin vivotranscriptional rhythms in twoNannochlropsisspecies,Nannochloropsis oceanicaCCMP1779 andNannochloropsis salinaCCMP537. The reporter lines express anticipatory behavior under light/dark cycles and free‐running bioluminescence rhythms with periods of ~21–31 h that damped within ~3–4 days under constant light. Using different entrainment regimes, we demonstrate that these rhythms are modulated by a circadian‐type oscillator. In addition, the phase of free‐running luminescence rhythms can be modulated pharmacologically using aCK1 ε/δ inhibitor, suggesting a role of this kinase in theNannochloropsisclock. Together with the molecular and genomic tools available forNannochloropsisspecies, these reporter lines represent an excellent system for future studies on the molecular mechanisms of stramenopile circadian oscillators.

     
    more » « less