Abstract Honeybees are master thermoregulators, capable of maintaining nest homeostasis across fluctuating ambient temperatures. When workers must cool their nest, they use multiple thermoregulatory behaviors (e.g., fanning, collecting water), but bearding, where hundreds to thousands of workers evacuate their nest and form a bivouac outside, is relatively unexplored. Here, we (1) describe natural bearding patterns, (2) experimentally manipulate colonies to determine what impacts beard size and timing, and (3) explore how workers dissipate back into their nest. We show that bearding occurs daily in hot weather, but the largest beards consistently happen in the evening/night, between the hours of 1800 and 2400. Beards are located around the nest entrance, but workers bias their position toward the shaded side of the nest box. As colony size increases, beard size and duration also increase, but the proportion of the colony bearding does not increase with colony size. Colonies with and without brood still cast beards; brood presence/absence did not impact beard size or duration. After noticing that beards tend to dissipate at sunrise, we experimentally showed that beards induced in the afternoon dissipate within 1–2 h, whereas beards induced in the evening remain overnight (10+ h). Bearding overnight, however, does carry risks for developing brood inside, as nest temperatures dropped below the optimal range, until the beard dissipated at sunrise. What cues workers use to depart the beard remain unknown, but experimentally illuminating colonies at night did not induce beards to dissipate. Our results suggest that bearding is an individual decision, not one that is coordinated across the colony. Still, these individual actions result in a dramatic collective response that colonies employ to reduce the temperature of their nest. Here, we show how and when colonies use bearding, despite its risks.
more »
« less
The role of temperature on the development of circadian rhythms in honey bee workers
Circadian rhythms in honey bees are involved in various processes that impact colony survival. For example, young nurses take care of the brood constantly throughout the day and lack circadian rhythms. At the same time, foragers use the circadian clock to remember and predict food availability in subsequent days. Previous studies exploring the ontogeny of circadian rhythms of workers showed that the onset of rhythms is faster in the colony environment (~2 days) than if workers were immediately isolated after eclosion (7–9 days). However, which specific environmental factors influenced the early development of worker circadian rhythms remained unknown. We hypothesized that brood nest temperature plays a key role in the development of circadian rhythmicity in young workers. Our results show that young workers kept at brood nest-like temperatures (33–35 °C) in the laboratory develop circadian rhythms faster and in greater proportion than bees kept at lower temperatures (24–26 °C). In addition, we examined if the effect of colony temperature during the first 48 h after emergence is sufficient to increase the rate and proportion of development of circadian rhythmicity. We observed that twice as many individuals exposed to 35 °C during the first 48 h developed circadian rhythms compared to individuals kept at 25 °C, suggesting a critical developmental period where brood nest temperatures are important for the development of the circadian system. Together, our findings show that temperature, which is socially regulated inside the hive, is a key factor that influences the ontogeny of circadian rhythmicity of workers.
more »
« less
- Award ID(s):
- 2231637
- PAR ID:
- 10533023
- Publisher / Repository:
- Peer J
- Date Published:
- Journal Name:
- PeerJ
- Volume:
- 12
- ISSN:
- 2167-8359
- Page Range / eLocation ID:
- e17086
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
O'Shea-Wheller, Thomas (Ed.)Abstract Honey bees utilize their circadian rhythms to accurately predict the time of day. This ability allows foragers to remember the specific timing of food availability and its location for several days. Previous studies have provided strong evidence toward light/dark cycles being the primary Zeitgeber for honey bees. Work in our laboratory described large individual variation in the endogenous period length of honey bee foragers from the same colony and differences in the endogenous rhythms under different constant temperatures. In this study, we further this work by examining the temperature inside the honey bee colony. By placing temperature and light data loggers at different locations inside the colony we measured temperature at various locations within the colony. We observed significant oscillations of the temperature inside the hive, that show seasonal patterns. We then simulated the observed temperature oscillations in the laboratory and found that using the temperature cycle as a Zeitgeber, foragers present large individual differences in the phase of locomotor rhythms for temperature. Moreover, foragers successfully synchronize their locomotor rhythms to these simulated temperature cycles. Advancing the cycle by six hours, resulting in changes in the phase of activity in some foragers in the assay. The results are shown in this study highlight the importance of temperature as a potential Zeitgeber in the field. Future studies will examine the possible functional and evolutionary role of the observed phase differences of circadian rhythms.more » « less
-
Abstract Honey bees are critical pollinators in ecosystems and agriculture, but their numbers have significantly declined. Declines in pollinator populations are thought to be due to multiple factors including habitat loss, climate change, increased vulnerability to disease and parasites, and pesticide use. Neonicotinoid pesticides are agonists of insect nicotinic cholinergic receptors, and sub-lethal exposures are linked to reduced honey bee hive survival. Honey bees are highly dependent on circadian clocks to regulate critical behaviors, such as foraging orientation and navigation, time-memory for food sources, sleep, and learning/memory processes. Because circadian clock neurons in insects receive light input through cholinergic signaling we tested for effects of neonicotinoids on honey bee circadian rhythms and sleep. Neonicotinoid ingestion by feeding over several days results in neonicotinoid accumulation in the bee brain, disrupts circadian rhythmicity in many individual bees, shifts the timing of behavioral circadian rhythms in bees that remain rhythmic, and impairs sleep. Neonicotinoids and light input act synergistically to disrupt bee circadian behavior, and neonicotinoids directly stimulate wake-promoting clock neurons in the fruit fly brain. Neonicotinoids disrupt honey bee circadian rhythms and sleep, likely by aberrant stimulation of clock neurons, to potentially impair honey bee navigation, time-memory, and social communication.more » « less
-
ABSTRACT Variable spring temperatures may expose developing insects to sublethal conditions, resulting in long-term consequences. The alfalfa leafcutting bee, Megachile rotundata, overwinters as a prepupa inside a brood cell, resuming development in spring. During these immobile stages of development, bees must tolerate unfavorable temperatures. In this study, we tested how exposure to low temperature stress during development affects subsequent reproduction and characteristics of the F1 generation. Developing male and female M. rotundata were exposed to either constant (6°C) or fluctuating (1 h day−1 at 20°C) low temperature stress for 1 week, during the pupal stage, to mimic a spring cold snap. Treated adults were marked and released into field cages, and reproductive output was compared with that of untreated control bees. Exposure to low temperatures during the pupal stage had mixed effects on reproduction and offspring characteristics. Females treated with fluctuating low temperatures were more likely to nest compared with control bees or those exposed to constant low temperature stress. Sublethal effects may have contributed to low nesting rates of bees exposed to constant low temperatures. Females from that group that were able to nest had fewer, larger offspring with high viability, suggesting a trade-off. Interestingly, offspring of bees exposed to fluctuating low temperatures were more likely to enter diapause, indicating that thermal history of parents, even during development, is an important factor in diapause determination.more » « less
-
Abstract Lithium has been considered a potential acaricidal agent against the honey bee (Apis mellifera) parasite Varroa. It is known that lithium suppresses elevated activity and regulates circadian rhythms and light response when administered to humans as a primary therapeutic chemical for bipolar disorder and to other bipolar syndrome model organisms, given the crucial role of timing in the bee's foraging activity and the alternating sunlight vs dark colony environment bees are exposed, we explored the influence of lithium on locomotor activity (LMA) and circadian rhythm of honey bees. We conducted acute and chronic lithium administration experiments, altering light conditions and lithium doses to assess LMA and circadian rhythm changes. We fed bees one time 10 μl sucrose solution with 0, 50, 150, and 450 mM LiCl in the acute application experiment and 0, 1, 5, and 10 mmol/kg LiCl ad libitum in bee candy in the chronic application experiment. Both acute and chronic lithium treatments significantly decreased the induced LMA under constant light. Chronic lithium treatment disrupted circadian rhythmicity in constant darkness. The circadian period was lengthened by lithium treatment under constant light. We discuss the results in the context ofVarroacontrol and lithium's effect on bipolar disorder.more » « less
An official website of the United States government

