We propose a boundary-aware multi-task deep-learning- based framework for fast 3D building modeling from a sin- gle overhead image. Unlike most existing techniques which rely on multiple images for 3D scene modeling, we seek to model the buildings in the scene from a single overhead im- age by jointly learning a modified signed distance function (SDF) from the building boundaries, a dense heightmap of the scene, and scene semantics. To jointly train for these tasks, we leverage pixel-wise semantic segmentation and normalized digital surface maps (nDSM) as supervision, in addition to labeled building outlines. At test time, buildings in the scene are automatically modeled in 3D using only an input overhead image. We demonstrate an increase in building modeling performance using a multi-feature net- work architecture that improves building outline detection by considering network features learned for the other jointly learned tasks. We also introduce a novel mechanism for ro- bustly refining instance-specific building outlines using the learned modified SDF. We verify the effectiveness of our method on multiple large-scale satellite and aerial imagery datasets, where we obtain state-of-the-art performance in the 3D building reconstruction task.
more »
« less
DNA: Deformable Neural Articulations Network for Template-free Dynamic 3D Human Reconstruction from Monocular RGB-D Video
In this paper, we present a novel Deformable Neural Articulations Network (DNA-Net), which is a template- free learning-based method for dynamic 3D human reconstruction from a single RGB-D sequence. Our proposed DNA-Net includes a Neural Articulation Prediction Net- work (NAP-Net), which is capable of representing non-rigid motions of a human by learning to predict a set of articulated bones to follow movements of the human in the in- put sequence. Moreover, DNA-Net also include Signed Distance Field Network (SDF-Net) and Appearance Network (Color-Net), which take advantage of the powerful neural implicit functions in modeling 3D geometries and appear- ance. Finally, to avoid the reliance on external optical flow estimators to obtain deformation cues like previous related works, we propose a novel training loss, namely Easy-to- Hard Geometric-based, which is a simple strategy that inherits the merits of Chamfer distance to achieve good de- formation guidance while still avoiding its limitation of lo- cal mismatches sensitivity. DNA-Net is trained end-to-end in a self-supervised manner directly on the input sequence to obtain 3D reconstructions of the input objects. Quantitative results on videos of DeepDeform dataset show that DNA-Net outperforms related state-of-the-art methods with an adequate gaps, qualitative results additionally prove that our method can reconstruct human shapes with high fidelity and details.
more »
« less
- PAR ID:
- 10466816
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-0249-3
- Page Range / eLocation ID:
- 3676 to 3685
- Format(s):
- Medium: X
- Location:
- Vancouver, BC, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Determining nucleic acid concentrations in a sample is an important step prior to proceeding with downstream analysis in molecular diagnostics. Given the need for testing DNA amounts and its purity in many samples, including in samples with very small input DNA, there is utility of novel machine learning approaches for accurate and high-throughput DNA quantification. Here, we demonstrated the ability of a neural network to predict DNA amounts coupled to paramagnetic beads. To this end, a custom-made microfluidic chip is applied to detect DNA molecules bound to beads by measuring the impedance peak response (IPR) at multiple frequencies. We leveraged electrical measurements including the frequency and imaginary and real parts of the peak intensity within a microfluidic channel as the input of deep learning models to predict DNA concentration. Specifically, 10 different deep learning architectures are examined. The results of the proposed regression model indicate that an R_Squared of 97% with a slope of 0.68 is achievable. Consequently, machine learning models can be a suitable, fast, and accurate method to measure nucleic acid concentration in a sample. The results presented in this study demonstrate the ability of the proposed neural network to use the information embedded in raw impedance data to predict the amount of DNA concentration.more » « less
-
We propose a deep learning solution to the inverse problem of localizing sources of network diffusion. Invoking graph signal processing (GSP) fundamentals, the problem boils down to blind estimation of a diffusion filter and its sparse input signal encoding the source locations. While the observations are bilinear functions of the unknowns, a mild requirement on invertibility of the graph filter enables a convex reformulation that we solve via the alternating-direction method of multipliers (ADMM). We unroll and truncate the novel ADMM iterations, to arrive at a parameterized neural network architecture for Source Localization on Graphs (SLoG-Net), that we train in an end-to-end fashion using labeled data. This way we leverage inductive biases of a GSP model-based solution in a data-driven trainable parametric architecture, which is interpretable, parameter efficient, and offers controllable complexity during inference. Experiments with simulated data corroborate that SLoG-Net exhibits performance in par with the iterative ADMM baseline, while attaining significant (post-training) speedups.more » « less
-
This paper introduces a deep neural network based method, i.e., DeepOrganNet, to generate and visualize fully high-fidelity 3D / 4D organ geometric models from single-view medical images with complicated background in real time. Traditional 3D / 4D medical image reconstruction requires near hundreds of projections, which cost insufferable computational time and deliver undesirable high imaging / radiation dose to human subjects. Moreover, it always needs further notorious processes to segment or extract the accurate 3D organ models subsequently. The computational time and imaging dose can be reduced by decreasing the number of projections, but the reconstructed image quality is degraded accordingly. To our knowledge, there is no method directly and explicitly reconstructing multiple 3D organ meshes from a single 2D medical grayscale image on the fly. Given single-view 2D medical images, e.g., 3D / 4D-CT projections or X-ray images, our end-to-end DeepOrganNet framework can efficiently and effectively reconstruct 3D / 4D lung models with a variety of geometric shapes by learning the smooth deformation fields from multiple templates based on a trivariate tensor-product deformation technique, leveraging an informative latent descriptor extracted from input 2D images. The proposed method can guarantee to generate high-quality and high-fidelity manifold meshes for 3D / 4D lung models; while, all current deep learning based approaches on the shape reconstruction from a single image cannot. The major contributions of this work are to accurately reconstruct the 3D organ shapes from 2D single-view projection, significantly improve the procedure time to allow on-the-fly visualization, and dramatically reduce the imaging dose for human subjects. Experimental results are evaluated and compared with the traditional reconstruction method and the state-of-the-art in deep learning, by using extensive 3D and 4D examples, including both synthetic phantom and real patient datasets. The efficiency of the proposed method shows that it only needs several milliseconds to generate organ meshes with 10K vertices, which has great potential to be used in real-time image guided radiation therapy (IGRT).more » « less
-
Abstract MotivationQuality assessment (QA) of predicted protein tertiary structure models plays an important role in ranking and using them. With the recent development of deep learning end-to-end protein structure prediction techniques for generating highly confident tertiary structures for most proteins, it is important to explore corresponding QA strategies to evaluate and select the structural models predicted by them since these models have better quality and different properties than the models predicted by traditional tertiary structure prediction methods. ResultsWe develop EnQA, a novel graph-based 3D-equivariant neural network method that is equivariant to rotation and translation of 3D objects to estimate the accuracy of protein structural models by leveraging the structural features acquired from the state-of-the-art tertiary structure prediction method—AlphaFold2. We train and test the method on both traditional model datasets (e.g. the datasets of the Critical Assessment of Techniques for Protein Structure Prediction) and a new dataset of high-quality structural models predicted only by AlphaFold2 for the proteins whose experimental structures were released recently. Our approach achieves state-of-the-art performance on protein structural models predicted by both traditional protein structure prediction methods and the latest end-to-end deep learning method—AlphaFold2. It performs even better than the model QA scores provided by AlphaFold2 itself. The results illustrate that the 3D-equivariant graph neural network is a promising approach to the evaluation of protein structural models. Integrating AlphaFold2 features with other complementary sequence and structural features is important for improving protein model QA. Availability and implementationThe source code is available at https://github.com/BioinfoMachineLearning/EnQA. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
An official website of the United States government

