skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning to Identify Sources of Network Diffusion
We propose a deep learning solution to the inverse problem of localizing sources of network diffusion. Invoking graph signal processing (GSP) fundamentals, the problem boils down to blind estimation of a diffusion filter and its sparse input signal encoding the source locations. While the observations are bilinear functions of the unknowns, a mild requirement on invertibility of the graph filter enables a convex reformulation that we solve via the alternating-direction method of multipliers (ADMM). We unroll and truncate the novel ADMM iterations, to arrive at a parameterized neural network architecture for Source Localization on Graphs (SLoG-Net), that we train in an end-to-end fashion using labeled data. This way we leverage inductive biases of a GSP model-based solution in a data-driven trainable parametric architecture, which is interpretable, parameter efficient, and offers controllable complexity during inference. Experiments with simulated data corroborate that SLoG-Net exhibits performance in par with the iterative ADMM baseline, while attaining significant (post-training) speedups.  more » « less
Award ID(s):
1809356 1750428
PAR ID:
10443085
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 30th European Signal Processing Conference (EUSIPCO)
Page Range / eLocation ID:
727 to 731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The growing success of graph signal processing (GSP) approaches relies heavily on prior identification of a graph over which network data admit certain regularity. However, adaptation to increasingly dynamic environments as well as demands for real-time processing of streaming data pose major challenges to this end. In this context, we develop novel algorithms for online network topology inference given streaming observations assumed to be smooth on the sought graph. Unlike existing batch algorithms, our goal is to track the (possibly) time-varying network topology while maintaining the memory and computational costs in check by processing graph signals sequentially-in-time. To recover the graph in an online fashion, we leverage proximal gradient (PG) methods to solve a judicious smoothness-regularized, time-varying optimization problem. Under mild technical conditions, we establish that the online graph learning algorithm converges to within a neighborhood of (i.e., it tracks) the optimal time-varying batch solution. Computer simulations using both synthetic and real financial market data illustrate the effectiveness of the proposed algorithm in adapting to streaming signals to track slowly-varying network connectivity. 
    more » « less
  2. Graph signal processing (GSP) has emerged as a powerful tool for practical network applications, including power system monitoring. Recent research has focused on developing GSP-based methods for state estimation, attack detection, and topology identification using the representation of the power system voltages as smooth graph signals. Within this framework, efficient methods have been developed for detecting false data injection (FDI) attacks, which until now were perceived as nonsmooth with respect to the graph Laplacian matrix. Consequently, these methods may not be effective against smooth FDI attacks. In this paper, we propose a graph FDI (GFDI) attack that minimizes the Laplacian-based graph total variation (TV) under practical constraints. We present the GFDI attack as the solution for a non-convex constrained optimization problem. The solution to the GFDI attack problem is obtained through approximating it using â„“1 relaxation. A series of quadratic programming problems that are classified as convex optimization problems are solved to obtain the final solution. We then propose a protection scheme that identifies the minimal set of measurements necessary to constrain the GFDI output to a high graph TV, thereby enabling its detection by existing GSP-based detectors. Our numerical simulations on the IEEE-57 and IEEE-118 bus test cases reveal the potential threat posed by well-designed GSP-based FDI attacks. Moreover, we demonstrate that integrating the proposed protection design with GSP-based detection can lead to significant hardware cost savings compared to previous designs of protection methods against FDI attacks. 
    more » « less
  3. null (Ed.)
    The key role of emotions in human life is undeniable. The question of whether there exists a brain pattern associated with a specific emotion is the theme of many affective neuroscience studies. In this work, we bring to bear graph signal processing (GSP) techniques to tackle the problem of automatic emotion recognition using brain signals. GSP is an extension of classical signal processing methods to complex networks where there exists an inherent relation graph. With the help of GSP, we propose a new framework for learning class-specific discriminative graphs. To that end, firstly we assume for each class of observations there exists a latent underlying graph representation. Secondly, we consider the observations are smooth on their corresponding class-specific sough graph while they are non-smooth on other classes’ graphs. The learned class-specific graph-based representations can act as sub-dictionaries and be utilized for the task of emotion classification. Applying the proposed method on an electroencephalogram (EEG) emotion recognition dataset indicates the superiority of our framework over other state-of-the-art methods. 
    more » « less
  4. We address the problem of online topology inference from streaming nodal observations of graph signals generated by linear diffusion dynamics on the sought graph. To that end, we leverage the stationarity of the signals and use the so-called graph-shift operator (GSO) as a matrix representation of the graph. Under this model, estimated covariance eigenvectors obtained from streaming independent graph signals diffused on the sought network are a valid estimator of the GSO's spectral templates. We develop an ADMM algorithm to find a sparse and structurally admissible GSO given the eigenvectors estimate. Then, we propose an online scheme that upon sensing new diffused observations, efficiently updates eigenvectors (thus makes more accurate on expectation) and performs only one or a few iterations of the mentioned ADMM until the new data is observed. Numerical tests illustrate the effectiveness of the proposed topology inference approach in recovering large scale graphs, adapting to streaming information, and accommodating changes in the sought network. 
    more » « less
  5. null (Ed.)
    Abstract Contemporary data is often supported by an irregular structure, which can be conveniently captured by a graph. Accounting for this graph support is crucial to analyze the data, leading to an area known as graph signal processing (GSP). The two most important tools in GSP are the graph shift operator (GSO), which is a sparse matrix accounting for the topology of the graph, and the graph Fourier transform (GFT), which maps graph signals into a frequency domain spanned by a number of graph-related Fourier-like basis vectors. This alternative representation of a graph signal is denominated the graph frequency signal. Several attempts have been undertaken in order to interpret the support of this graph frequency signal, but they all resulted in a one-dimensional interpretation. However, if the support of the original signal is captured by a graph, why would the graph frequency signal have a simple one-dimensional support? Departing from existing work, we propose an irregular support for the graph frequency signal, which we coin dual graph. A dual GSO leads to a better interpretation of the graph frequency signal and its domain, helps to understand how the different graph frequencies are related and clustered, enables the development of better graph filters and filter banks, and facilitates the generalization of classical SP results to the graph domain. 
    more » « less