Abstract Formamidinium (FA)‐based lead iodide perovskites have emerged as the most promising light‐absorber materials in the prevailing perovskite solar cells (PSCs). However, they suffer from the phase‐instability issue in the ambient atmosphere, which is holding back the realization of the full potential of FA‐based PSCs in the context of high efficiency and stability. Herein, the tetraethylorthosilicate hydrolysis process is integrated with the solution crystallization of FA‐based perovskites, forming a new film structure with individual perovskite grains encapsulated by amorphous silica layers that are in situ formed at the nanoscale. The silica not only protects perovskite grains from the degradation but also enhances the charge‐carrier dynamics of perovskite films. The underlying mechanism is discussed using a joint experiment‐theory approach. Through this in situ grain encapsulation method, PSCs show an efficiency close to 20% with an impressive 97% retention after 1000‐h storage under ambient conditions.
more »
« less
Perovskite grain wrapping by converting interfaces and grain boundaries into robust and water-insoluble low-dimensional perovskites
Stabilizing perovskite solar cells requires consideration of all defective sites in the devices. Substantial efforts have been devoted to interfaces, while stabilization of grain boundaries received less attention. Here, we report on a molecule tributyl(methyl)phosphonium iodide (TPI), which can convert perovskite into a wide bandgap one-dimensional (1D) perovskite that is mechanically robust and water insoluble. Mixing TPI with perovskite precursor results in a wrapping of perovskite grains with both grain surfaces and grain boundaries converted into several nanometer-thick 1D perovskites during the grain formation process as observed by direct mapping. The grain wrapping passivates the grain boundaries, enhances their resistance to moisture, and reduces the iodine released during light soaking. The perovskite films with wrapped grains are more stable under heat and light. The best device with wrapped grains maintained 92.2% of its highest efficiency after light soaking under 1-sun illumination for 1900 hours at 55°C open-circuit condition.
more »
« less
- Award ID(s):
- 1903981
- PAR ID:
- 10467032
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 8
- Issue:
- 48
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Grain size effects on the early plastic strain localization and slip transfer at grain boundaries were investigated for the Alloy 718 Ni-based superalloy at 650C. Three microstructures with different grain sizes underwent monotonic tensile tests at 650C, both in air and under vacuum, until rupture. All the microstructure variants exhibit fully intragranular fracture under vacuum and partially intergranular fracture in air. In this latter case, predominant intergranular fracture mode was found in the fine-grain microstructures. Interrupted tensile tests were also conducted under vacuum with ex-situ SEM high-resolution digital image correlation (HR-DIC) measurements to assess in-plane kinematics fields at the microstructure scale. Out-of-plane displacement jumps were obtained using laser scanning confocal microscopy. Both crystallographic slip within grains and near twin boundaries (TBs) and morphological sliding happening at grain boundaries (GBs) were documented. Statistical analysis of all plastic events aimed at quantifying strain localization distribution as a function of the microstructure. The fine-grain microstructure was found to have extensive strain localization at grain boundaries, while the coarse-grain microstructure is more prone to intragranular slip development and slip localization near TBs. Different scenarios of slip band/grain boundary interactions were evidenced.more » « less
-
Heat stress occurring during rice (Oryza sativa) grain development reduces grain quality, which often manifests as increased grain chalkiness. Although the impact of heat stress on grain yield is well-studied, the genetic basis of rice grain quality under heat stress is less explored as quantifying grain quality is less tractable than grain yield. To address this, we used an image-based colorimetric assay (Red, R; and Green, G) for genome-wide association analysis to identify genetic loci underlying the phenotypic variation in rice grains exposed to heat stress. We found the R to G pixel ratio (RG) derived from mature grain images to be effective in distinguishing chalky grains from translucent grains derived from control (28/24°C) and heat stressed (36/32°C) plants. Our analysis yielded a novel gene, riceChalky Grain 5(OsCG5) that regulates natural variation for grain chalkiness under heat stress.OsCG5encodes a grain-specific, expressed protein of unknown function. Accessions with lower transcript abundance ofOsCG5exhibit higher chalkiness, which correlates with higher RG values under stress. These findings are supported by increased chalkiness ofOsCG5knock-out (KO) mutants relative to wildtype (WT) under heat stress. Grains from plants overexpressingOsCG5are less chalky than KOs but comparable to WT under heat stress. Compared to WT and OE, KO mutants exhibit greater heat sensitivity for grain size and weight relative to controls. Collectively, these results show that the natural variation atOsCG5may contribute towards rice grain quality under heat stress.more » « less
-
Abstract Oxide solid electrolytes (OSEs) have the potential to achieve improved safety and energy density for lithium-ion batteries, but their high grain-boundary (GB) resistance generally is a bottleneck. In the well-studied perovskite oxide solid electrolyte, Li3xLa2/3-xTiO3(LLTO), the ionic conductivity of grain boundaries is about three orders of magnitude lower than that of the bulk. In contrast, the related Li0.375Sr0.4375Ta0.75Zr0.25O3(LSTZ0.75) perovskite exhibits low grain boundary resistance for reasons yet unknown. Here, we use aberration-corrected scanning transmission electron microscopy and spectroscopy, along with an active learning moment tensor potential, to reveal the atomic scale structure and composition of LSTZ0.75 grain boundaries. Vibrational electron energy loss spectroscopy is applied for the first time to reveal atomically resolved vibrations at grain boundaries of LSTZ0.75 and to characterize the otherwise unmeasurable Li distribution therein. We find that Li depletion, which is a major reason for the low grain boundary ionic conductivity of LLTO, is absent for the grain boundaries of LSTZ0.75. Instead, the low grain boundary resistivity of LSTZ0.75 is attributed to the formation of a nanoscale defective cubic perovskite interfacial structure that contained abundant vacancies. Our study provides new insights into the atomic scale mechanisms of low grain boundary resistivity.more » « less
-
This work discusses new methodologies for identifying the grain boundaries in color images of metallic microstructures and the quantification of their grain topology. Grain boundaries have a large impact on the macro-scale material properties. Particularly, this work employs the experimental microstructure data of Titanium-Aluminum alloys, which can be used for various aerospace components owing to their outstanding mechanical performance in elevated temperatures. The grain topology of these metallic microstructures is quantified using the concept of shape moment invariants. In order to capture the grains using the shape moment invariants, it is necessary to identify the grain boundaries and separate them from their respective grains. We present two methodologies to detect the grain boundaries. The first method is the tolerance-based neighbor analysis. The second method focuses on creating three-dimensional space of pixel intensity values based on the three color channels and measuring the Euclidean distance to separate different grains. Additionally, since the grain boundaries may not possess the same material properties as the grain itself, this work investigates the effect of including the grain boundaries when determining the homogenized material properties of the given microstructure. To generate adequate statistical information, microstructures are reconstructed from the experimental data using the Markov Random Field (MRF) method. Upon separating the grains, we use the shape moment invariants to quantify the shapes of different grains. Using the shape moment invariants and the experimental material property values, three neural network functions are developed to investigate the effects of grain boundaries on material property predictions.more » « less
An official website of the United States government

