skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning
Recent studies have revealed the intriguing fewshot learning ability of pretrained language models (PLMs): They can quickly adapt to a new task when fine-tuned on a small amount of labeled data formulated as prompts, without requiring abundant task-specific annotations. Despite their promising performance, most existing few-shot approaches that only learn from the small training set still underperform fully supervised training by nontrivial margins. In this work, we study few-shot learning with PLMs from a different perspective: We first tune an autoregressive PLM on the few-shot samples and then use it as a generator to synthesize a large amount of novel training samples which augment the original training set. To encourage the generator to produce label discriminative samples, we train it via weighted maximum likelihood where the weight of each token is automatically adjusted based on a discriminative meta-learning objective. A classification PLM can then be fine-tuned on both the few-shot and the synthetic samples with regularization for better generalization and stability. Our approach FewGen achieves an overall better result across seven classification tasks of the GLUE benchmark than existing few-shot learning methods, improving no-augmentation methods by 5+ average points, and outperforming augmentation methods by 3+ average points.  more » « less
Award ID(s):
1956151 1741317 1704532
PAR ID:
10467077
Author(s) / Creator(s):
Editor(s):
Proc. 2023 Int. Conf. on Machine Learning 
Publisher / Repository:
PMLR: Proceedings of Machine Learning Research
Date Published:
Edition / Version:
1
Subject(s) / Keyword(s):
Tuning Language Models, Training Data Generators, Augmentation-Enhanced Few-Shot Learning
Format(s):
Medium: X
Location:
Honolulu, Hawaii
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of few-shot Fine-grained Entity Typing (FET), where only a few annotated entity mentions with contexts are given for each entity type. Recently, prompt-based tuning has demonstrated superior performance to standard fine-tuning in few-shot scenarios by formulating the entity type classification task as a “fill-in-the-blank” problem. This allows effective utilization of the strong language modeling capability of Pre-trained Language Models (PLMs). Despite the success of current prompt-based tuning approaches, two major challenges remain: (1) the verbalizer in prompts is either manually designed or constructed from external knowledge bases, without considering the target corpus and label hierarchy information, and (2) current approaches mainly utilize the representation power of PLMs, but have not explored their generation power acquired through extensive general-domain pre-training. In this work, we propose a novel framework for fewshot FET consisting of two modules: (1) an entity type label interpretation module automatically learns to relate type labels to the vocabulary by jointly leveraging few-shot instances and the label hierarchy, and (2) a type-based contextualized instance generator produces new instances based on given instances to enlarge the training set for better generalization. On three benchmark datasets, our model outperforms existing methods by significant margins. 
    more » « less
  2. Few-shot graph classification aims at predicting classes for graphs, given limited labeled graphs for each class. To tackle the bottleneck of label scarcity, recent works propose to incorporate few-shot learning frameworks for fast adaptations to graph classes with limited labeled graphs. Specifically, these works propose to accumulate meta-knowledge across diverse meta-training tasks, and then generalize such meta-knowledge to the target task with a disjoint label set. However, existing methods generally ignore task correlations among meta-training tasks while treating them independently. Nevertheless, such task correlations can advance the model generalization to the target task for better classification performance. On the other hand, it remains non-trivial to utilize task correlations due to the complex components in a large number of meta-training tasks. To deal with this, we propose a novel few-shot learning framework FAITH that captures task correlations via constructing a hierarchical task graph at different granularities. Then we further design a loss-based sampling strategy to select tasks with more correlated classes. Moreover, a task-specific classifier is proposed to utilize the learned task correlations for few-shot classification. Extensive experiments on four prevalent few-shot graph classification datasets demonstrate the superiority of FAITH over other state-of-the-art baselines. 
    more » « less
  3. The ability of generative language models (GLMs) to generate text has improved considerably in the last few years, enabling their use for generative data augmentation. In this work, we propose CONDA, an approach to further improve GLM’s ability to generate synthetic data by reformulating data generation as context generation for a given question-answer (QA) pair and leveraging QA datasets for training context generators. Then, we cast downstream tasks into the same question answering format and adapt the fine-tuned context generators to the target task domain. Finally, we use the fine-tuned GLM to generate relevant contexts, which are in turn used as synthetic training data for their corresponding tasks. We perform extensive experiments on multiple classification datasets and demonstrate substantial improvements in performance for both few- and zero-shot settings. Our analysis reveals that QA datasets that require high-level reasoning abilities (e.g., abstractive and common-sense QA datasets) tend to give the best boost in performance in both few-shot and zero-shot settings. 
    more » « less
  4. The problem of few-shot graph classification targets at assigning class labels for graph samples, where only limited labeled graphs are provided for each class. To solve the problem brought by label scarcity, recent studies have proposed to adopt the prevalent few-shot learning framework to achieve fast adaptations to graph classes with limited labeled graphs. In particular, these studies typically propose to accumulate meta-knowledge across a large number of meta-training tasks, and then generalize such meta-knowledge to meta-test tasks sampled from a disjoint class set. Nevertheless, existing studies generally ignore the crucial task correlations among meta-training tasks and treat them independently. In fact, such task correlations can help promote the model generalization to meta-test tasks and result in better classification performance. On the other hand, it remains challenging to capture and utilize task correlations due to the complex components and interactions in meta-training tasks. To deal with this, we propose a novel few-shot graph classification framework FAITH to capture task correlations via learning a hierarchical task structure at different granularities. We further propose a task-specific classifier to incorporate the learned task correlations into the few-shot graph classification process. Moreover, we derive FAITH+, a variant of FAITH that can improve the sampling process for the hierarchical task structure. The extensive experiments on four prevalent graph datasets further demonstrate the superiority of FAITH and FAITH+ over other state-of-the-art baselines. 
    more » « less
  5. Baeza-Yates, Ricardo; Bonchi, Francesco (Ed.)
    Fine-grained entity typing (FET), which assigns entities in text with context-sensitive, fine-grained semantic types, is a basic but important task for knowledge extraction from unstructured text. FET has been studied extensively in natural language processing and typically relies on human-annotated corpora for training, which is costly and difficult to scale. Recent studies explore the utilization of pre-trained language models (PLMs) as a knowledge base to generate rich and context-aware weak supervision for FET. However, a PLM still requires direction and guidance to serve as a knowledge base as they often generate a mixture of rough and fine-grained types, or tokens unsuitable for typing. In this study, we vision that an ontology provides a semantics-rich, hierarchical structure, which will help select the best results generated by multiple PLM models and head words. Specifically, we propose a novel annotation-free, ontology-guided FET method, ONTOTYPE, which follows a type ontological structure, from coarse to fine, ensembles multiple PLM prompting results to generate a set of type candidates, and refines its type resolution, under the local context with a natural language inference model. Our experiments on the Ontonotes, FIGER, and NYT datasets using their associated ontological structures demonstrate that our method outperforms the state-of-the-art zero-shot fine-grained entity typing methods as well as a typical LLM method, ChatGPT. Our error analysis shows that refinement of the existing ontology structures will further improve fine-grained entity typing. 
    more » « less