skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: P4Cub: A Little Language for Big Routers
P4Cub is a new intermediate representation (IR) for the P4 programming language. It has been designed with the goal of facilitating development of certified tools. To achieve this, P4Cub is organized around a small set of core constructs and avoids side effects in expressions, which avoids mutual recursion between the semantics of expressions and statements. Still, it retains the essential domain-specific features of P4 itself. P4Cub has a front-end based on Petr4, and has been fully mechanized in Coq including big-step and small-step semantics and a type system. As case studies, we have engineered several certified tools with P4Cub including proofs of type soundness, a verified compilation pass, and an automated verification tool.  more » « less
Award ID(s):
1918396
PAR ID:
10467226
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400700262
Page Range / eLocation ID:
303 to 319
Subject(s) / Keyword(s):
Coq, P4, formal semantics, formal verification, intermediate representations, domain-specific languages.
Format(s):
Medium: X
Location:
Boston MA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. P4 is a domain-specific language for programming and specifying packet-processing systems. It is based on an elegant design with high-level abstractions like parsers and match-action pipelines that can be compiled to efficient implementations in software or hardware. Unfortunately, like many industrial languages, P4 has developed without a formal foundation. The P4 Language Specification is a 160-page document with a mixture of informal prose, graphical diagrams, and pseudocode, leaving many aspects of the language semantics up to individual compilation targets. The P4 reference implementation is a complex system, running to over 40KLoC of C++ code, with support for only a few targets. Clearly neither of these artifacts is suitable for formal reasoning about P4 in general. This paper presents a new framework, called Petr4, that puts P4 on a solid foundation. Petr4 consists of a clean-slate definitional interpreter and a core calculus that models a fragment of P4. Petr4 is not tied to any particular target: the interpreter is parameterized over an interface that collects features delegated to targets in one place, while the core calculus overapproximates target-specific behaviors using non-determinism. We have validated the interpreter against a suite of over 750 tests from the P4 reference implementation, exercising our target interface with tests for different targets. We validated the core calculus with a proof of type-preserving termination. While developing Petr4, we reported dozens of bugs in the language specification and the reference implementation, many of which have been fixed. 
    more » « less
  2. Template-Coq 5 is a plugin for Coq, originally implemented by Malecha, which provides a reifier for Coq terms and global declara- tions, as represented in the Coq kernel, as well as a denotation command. Initially, it was developed for the purpose of writing functions on Coq’s AST in Gallina. Recently, it was used in the CertiCoq certified compiler project, as its front-end language, to derive parametricity properties, and to extract Coq terms to a CBV λ-calculus. However, the syntax lacked semantics, be it typing semantics or operational semantics, which should reflect, as formal specifications in Coq, the semantics of Coq’s type theory itself. The tool was also rather bare bones, providing only rudimentary quoting and unquoting commands. We generalize it to han- dle the entire Calculus of Inductive Constructions (CIC), as implemented by Coq, including the kernel’s declaration structures for definitions and inductives, and implement a monad for general manipulation of Coq’s logical environment. We demonstrate how this setup allows Coq users to define many kinds of general purpose plugins, whose correctness can be readily proved in the system itself, and that can be run efficiently after extraction. We give a few examples of implemented plugins, including a parametricity translation. We also advocate the use of Template-Coq as a foundation for higher-level tools. 
    more » « less
  3. Live programming environments aim to provide programmers (and sometimes audiences) with continuous feedback about a program's dynamic behavior as it is being edited. The problem is that programming languages typically assign dynamic meaning only to programs that are complete, i.e. syntactically well-formed and free of type errors. Consequently, live feedback presented to the programmer exhibits temporal or perceptive gaps. This paper confronts this gap problem from type-theoretic first principles by developing a dynamic semantics for incomplete functional programs, starting from the static semantics for incomplete functional programs developed in recent work on Hazelnut. We model incomplete functional programs as expressions with holes, with empty holes standing for missing expressions or types, and non-empty holes operating as membranes around static and dynamic type inconsistencies. Rather than aborting when evaluation encounters any of these holes as in some existing systems, evaluation proceeds around holes, tracking the closure around each hole instance as it flows through the remainder of the program. Editor services can use the information in these hole closures to help the programmer develop and confirm their mental model of the behavior of the complete portions of the program as they decide how to fill the remaining holes. Hole closures also enable a fill-and-resume operation that avoids the need to restart evaluation after edits that amount to hole filling. Formally, the semantics borrows machinery from both gradual type theory (which supplies the basis for handling unfilled type holes) and contextual modal type theory (which supplies a logical basis for hole closures), combining these and developing additional machinery necessary to continue evaluation past holes while maintaining type safety. We have mechanized the metatheory of the core calculus, called Hazelnut Live, using the Agda proof assistant. We have also implemented these ideas into the Hazel programming environment. The implementation inserts holes automatically, following the Hazelnut edit action calculus, to guarantee that every editor state has some (possibly incomplete) type. Taken together with this paper's type safety property, the result is a proof-of-concept live programming environment where rich dynamic feedback is truly available without gaps, i.e. for every reachable editor state. 
    more » « less
  4. Formal methods have advanced to the point where the functional correctness of various large system components has been mechanically verified. However, the diversity of semantic models used across projects makes it difficult to connect these component to build larger certified systems. Given this, we seek to embed these models and proofs into a general-purpose framework where they could interact. We believe that a synthesis of game semantics, the refinement calculus, and algebraic effects can provide such a framework. To combine game semantics and refinement, we replace the downset completion typically used to construct strategies from posets of plays. Using the free completely distributive completion, we construct strategy specifications equipped with arbitrary angelic and demonic choices and ordered by a generalization of alternating refinement. This provides a novel approach to nondeterminism in game semantics. Connecting algebraic effects and game semantics, we interpret effect signatures as games and define two categories of effect signatures and strategy specifications. The resulting models are sufficient to represent the behaviors of a variety of low-level components, including the certified abstraction layers used to verify the operating system kernel CertiKOS. 
    more » « less
  5. Network programmers can currently deploy an arbitrary set of protocols in forwarding devices through data plane programming languages such as P4. However, as any other type of software, P4 programs are subject to bugs and misconfigurations. Network verification tools have been proposed as a means of ensuring that the network behaves as expected, but these tools typically require programmers to manually model P4 programs, are limited in terms of the properties they can guarantee and frequently face severe scalability issues. In this paper, we argue for a novel approach to this problem. Rather than statically inspecting a network configuration looking for bugs, we propose to enforce networking properties at runtime. To this end, we developed P4box, a system for deploying runtime monitors in programmable data planes. Our results show that P4box allows programmers to easily express a broad range of properties. Moreover, we demonstrate that runtime monitors represent a small overhead to network devices in terms of latency and resource consumption. 
    more » « less