This paper considers parametricity and its consequent free theorems for nested data types. Rather than representing nested types via their Church encodings in a higher-kinded or dependently typed extension of System F, we adopt a functional programming perspective and design a Hindley-Milner-style calculus with primitives for constructing nested types directly as fixpoints. Our calculus can express all nested types appearing in the literature, including truly nested types. At the level of terms, it supports primitive pattern matching, map functions, and fold combinators for nested types. Our main contribution is the construction of a parametric model for our calculus. This is both delicate andchallenging. In particular, to ensure the existence of semantic fixpoints interpreting nested types, and thus to establish a suitable Identity Extension Lemma for our calculus, our type system must explicitly track functoriality of types, and cocontinuity conditions on the functors interpreting them must be appropriately threaded throughout the model construction. We also prove that our model satisfies an appropriate Abstraction Theorem, as well as that it verifies all standard consequences of parametricity in the presence of primitive nested types. We give several concrete examples illustrating how our model can be used to derive useful free theorems, including a short cut fusion transformation, for programs over nested types. Finally, we consider generalizing our results to GADTs, and argue that no extension of our parametric model for nested types can give a functorial interpretation of GADTs in terms of left Kan extensions and still be parametric.
more »
« less
Towards Certified Meta-Programming with Typed Template-Coq
Template-Coq 5 is a plugin for Coq, originally implemented by Malecha, which provides a reifier for Coq terms and global declara- tions, as represented in the Coq kernel, as well as a denotation command. Initially, it was developed for the purpose of writing functions on Coq’s AST in Gallina. Recently, it was used in the CertiCoq certified compiler project, as its front-end language, to derive parametricity properties, and to extract Coq terms to a CBV λ-calculus. However, the syntax lacked semantics, be it typing semantics or operational semantics, which should reflect, as formal specifications in Coq, the semantics of Coq’s type theory itself. The tool was also rather bare bones, providing only rudimentary quoting and unquoting commands. We generalize it to han- dle the entire Calculus of Inductive Constructions (CIC), as implemented by Coq, including the kernel’s declaration structures for definitions and inductives, and implement a monad for general manipulation of Coq’s logical environment. We demonstrate how this setup allows Coq users to define many kinds of general purpose plugins, whose correctness can be readily proved in the system itself, and that can be run efficiently after extraction. We give a few examples of implemented plugins, including a parametricity translation. We also advocate the use of Template-Coq as a foundation for higher-level tools.
more »
« less
- Award ID(s):
- 1646417
- PAR ID:
- 10076453
- Date Published:
- Journal Name:
- ITP 2018 - 9th Conference on Interactive Theorem Proving
- Page Range / eLocation ID:
- 1-18
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kiefer, S; Tasson, C. (Ed.)This paper considers parametricity and its resulting free theorems for nested data types. Rather than representing nested types via their Church encodings in a higher-kinded or dependently typed extension of System F, we adopt a functional programming perspective and design a Hindley-Milner-style calculus with primitives for constructing nested types directly as fixpoints. Our calculus can express all nested types appearing in the literature, including truly nested types. At the term level, it supports primitive pattern matching, map functions, and fold combinators for nested types. Our main contribution is the construction of a parametric model for our calculus. This is both delicate and challenging: to ensure the existence of semantic fixpoints interpreting nested types, and thus to establish a suitable Identity Extension Lemma for our calculus, our type system must explicitly track functoriality of types, and cocontinuity conditions on the functors interpreting them must be appropriately threaded throughout the model construction. We prove that our model satisfies an appropriate Abstraction Theorem and verifies all standard consequences of parametricity for primitive nested types.more » « less
-
P4Cub is a new intermediate representation (IR) for the P4 programming language. It has been designed with the goal of facilitating development of certified tools. To achieve this, P4Cub is organized around a small set of core constructs and avoids side effects in expressions, which avoids mutual recursion between the semantics of expressions and statements. Still, it retains the essential domain-specific features of P4 itself. P4Cub has a front-end based on Petr4, and has been fully mechanized in Coq including big-step and small-step semantics and a type system. As case studies, we have engineered several certified tools with P4Cub including proofs of type soundness, a verified compilation pass, and an automated verification tool.more » « less
-
Motivated by the increasing importance of general-purpose Graphic Processing Units (GPGPU) programming, exemplified by NVIDIA’s CUDA framework, as well as the difficulty, especially for novice programmers, of reasoning about performance in GPGPU kernels, we introduce a novel quantitative program logic for CUDA kernels. The logic allows programmers to reason about both functional correctness and resource usage of CUDA kernels, paying particular attention to a set of common but CUDA-specific performance bottlenecks: warp divergences, uncoalesced memory accesses, and bank conflicts. The logic is proved sound with respect to a novel operational cost semantics for CUDA kernels. The semantics, logic, and soundness proofs are formalized in Coq. An inference algorithm based on LP solving automatically synthesizes symbolic resource bounds by generating derivations in the logic. This algorithm is the basis of RaCUDA, an end-to-end resource-analysis tool for kernels, which has been implemented using an existing resource-analysis tool for imperative programs. An experimental evaluation on a suite of benchmarks shows that the analysis is effective in aiding the detection of performance bugs in CUDA kernels.more » « less
-
Parametric polymorphism and gradual typing have proven to be a difficult combination, with no language yet produced that satisfies the fundamental theorems of each: parametricity and graduality. Notably, Toro, Labrada, and Tanter (POPL 2019) conjecture that for any gradual extension of System F that uses dynamic type generation, graduality and parametricity are ``simply incompatible''. However, we argue that it is not graduality and parametricity that are incompatible per se, but instead that combining the syntax of System F with dynamic type generation as in previous work necessitates type-directed computation, which we show has been a common source of graduality and parametricity violations in previous work. We then show that by modifying the syntax of universal and existential types to make the type name generation explicit, we remove the need for type-directed computation, and get a language that satisfies both graduality and parametricity theorems. The language has a simple runtime semantics, which can be explained by translation to a statically typed language where the dynamic type is interpreted as a dynamically extensible sum type. Far from being in conflict, we show that the parametricity theorem follows as a direct corollary of a relational interpretation of the graduality property.more » « less
An official website of the United States government

