Abstract The pursuit of smaller, energy‐efficient devices drives the exploration of electromechanically active thin films (<1 µm) to enable micro‐ and nano‐electromechanical systems. While the electromechanical response of such films is limited by substrate‐induced mechanical clamping, large electromechanical responses in antiferroelectric and multilayer thin‐film heterostructures have garnered interest. Here, multilayer thin‐film heterostructures based on antiferroelectric PbHfO3and ferroelectric PbHf1‐xTixO3overcome substrate clamping to produce electromechanical strains >4.5%. By varying the chemistry of the PbHf1‐xTixO3layer (x = 0.3‐0.6) it is possible to alter the threshold field for the antiferroelectric‐to‐ferroelectric phase transition, reducing the field required to induce the onset of large electromechanical response. Furthermore, varying the interface density (from 0.008 to 3.1 nm−1) enhances the electrical‐breakdown field by >450%. Attaining the electromechanical strains does not necessitate creating a new material with unprecedented piezoelectric coefficients, but developing heterostructures capable of withstanding large fields, thus addressing traditional limitations of thin‐film piezoelectrics.
more »
« less
Reliability of piezoelectric films for MEMS
Abstract Thin films based on PbZr1−xTixO3and K1−xNaxNbO3are increasingly being commercialized in piezoelectric MEMS due to the comparatively low drive voltages required relative to bulk actuators, as well as the facile approach to making sensor or actuator arrays. As these materials are incorporated into devices, it is critically important that they operate reliably over the lifetime of the system. This paper discusses some of the factors controlling the electrical and electromechanical reliability of lead zirconate titanate (PZT)-based piezoMEMS films. In particular, it will be shown the gradients in the Zr/Ti ratio through the depth of the films are useful in increasing the lifetime of the films under DC electrical stresses.
more »
« less
- PAR ID:
- 10467295
- Publisher / Repository:
- IOP Publishing Ltd.
- Date Published:
- Journal Name:
- Japanese Journal of Applied Physics
- Volume:
- 62
- Issue:
- SM
- ISSN:
- 0021-4922
- Page Range / eLocation ID:
- SM0802
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract To advance the MXene field, it is crucial to optimize each step of the synthesis process and create a detailed, systematic guide for synthesizing high‐quality MXene that can be consistently reproduced. In this study, a detailed guide is provided for an optimized synthesis of titanium carbide (Ti3C2Tx) MXene using a mixture of hydrofluoric and hydrochloric acids for the selective etching of the stoichimetric‐Ti3AlC2MAX phase and delamination of the etched multilayered Ti3C2TxMXene using lithium chloride at 65 °C for 1 h with argon bubbling. The effect of different synthesis variables is investigated, including the stoichiometry of the mixed powders to synthesize Ti3AlC2, pre‐etch impurity removal conditions, selective etching, storage, and drying of MXene multilayer powder, and the subsequent delamination conditions. The synthesis yield and the MXene film electrical conductivity are used as the two parameters to evaluate the MXene quality. Also the MXenes are characterized with scanning electron microscopy, x‐ray diffraction, atomic force microscopy, and ellipsometry. The Ti3C2Txfilm made via the optimized method shows electrical conductivity as high as ≈21,000 S/cm with a synthesis yield of up to 38 %. A detailed protocol is also provided for the Ti3C2TxMXene synthesis as the supporting information for this study.more » « less
-
Abstract Silk nanofibers (SNFs) from abundant sources are low‐cost and environmentally friendly. Combined with other functional materials, SNFs can help create bioelectronics with excellent biocompatibility without environmental concerns. However, it is still challenging to construct an SNF‐based composite with high conductivity, flexibility, and mechanical strength for all SNF‐based electronics. Herein, this work reports the design and fabrication of Ti3C2Tx‐silver@silk nanofibers (Ti3C2Tx‐Ag@SNF) composites with multi‐dimensional heterogeneous conductive networks using combined in situ growth and vacuum filtration methods. The ultrahigh electrical conductivity of Ti3C2Tx‐Ag@SNF composites (142959 S m−1) provides the kirigami‐patterned soft heaters with a rapid heating rate of 87 °C s−1. The multi‐dimensional heterogeneous network further allows the creation of electromagnetic interference shielding devices with an exceptionally high specific shielding effectiveness of 10,088 dB cm−1. Besides working as a triboelectric layer to harvest the mechanical energy and recognize the hand gesture, the Ti3C2Tx‐Ag@SNF composites can also be combined with an ionic layer to result in a capacitive pressure sensor with a high sensitivity of 410 kPa−1in a large range due to electronic‐double layer effect. The applications of the Ti3C2Tx‐Ag@SNF composites in recognizing human gestures and human‐machine interfaces to wirelessly control a trolley demonstrate the future development of all SNF‐based electronics.more » « less
-
Abstract Alloying selected layered transitional metal trichalcogenides (TMTCs) with unique chain‐like structures offers the opportunities for structural, optical, and electrical engineering thus expands the regime of this class of pseudo‐one‐dimensional materials. Here, the novel phase transition in anisotropic Nb(1−x)TixS3alloys is demonstrated for the first time. Results show that Nb(1−x)TixS3can be fully alloyed across the entire composition range from triclinic‐phase NbS3to monoclinic‐phase TiS3. Surprisingly, incorporation of a small concentration of Ti (x ≈0.05–0.18) into NbS3host matrix is sufficient to induce triclinic to monoclinic transition. Theoretical studies suggest that Ti atoms effectively introduce hole doping, thus rapidly decreases the total energy of monoclinic phase and induces the phase transition. When alloyed, crystalline and optical anisotropy are largely preserved as evidenced by high resolution transmission electron microscopy and angle‐resolved Raman spectroscopy. Further Raman measurements identify Raman modes to determine crystalline anisotropy direction and offer insights into the degree of anisotropy. Overall results introduce Nb(1−x)TixS3as a new and easy phase change material and mark the first phase engineering in anisotropic van der Waals (vdW) trichalcogenide systems for their potential applications in two‐dimensional superconductivity, electronics, photonics, and information technologies.more » « less
-
Abstract MXenes constitute a rapidly growing family of 2D materials that are promising for optoelectronic applications because of numerous attractive properties, including high electrical conductivity. However, the most widely used titanium carbide (Ti3C2Tx) MXene transparent conductive electrode exhibits insufficient environmental stability and work function (WF), which impede practical applications Ti3C2Txelectrodes in solution‐processed optoelectronics. Herein, Ti3C2TxMXene film with a compact structure and a perfluorosulfonic acid (PFSA) barrier layer is presented as a promising electrode for organic light‐emitting diodes (OLEDs). The electrode shows excellent environmental stability, highWFof 5.84 eV, and low sheet resistanceRSof 97.4 Ω sq−1. The compact Ti3C2Txstructure after thermal annealing resists intercalation of moisture and environmental contaminants. In addition, the PFSA surface modification passivates interflake defects and modulates theWF. Thus, changes in theWFandRSare negligible even after 22 days of exposure to ambient air. The Ti3C2TxMXene is applied for large‐area, 10 × 10 passive matrix flexible OLEDs on substrates measuring 6 × 6 cm. This work provides a simple but efficient strategy to overcome both the limited environmental stability and lowWFof MXene electrodes for solution‐processable optoelectronics.more » « less
An official website of the United States government

