In this work, we propose a solution to such a two-fold issue. We use our version of differentially private stochastic gradient descent (DP-SGD) algorithm to preserve privacy and then apply our Byzantine-resilient algorithms. We note that while existing works follow this general approach, an in-depth analysis on the interplay between DP and Byzantine resilience has been ignored, leading to unsatisfactory performance. Specifically, for the random noise introduced by DP, previous works strive to reduce its seemingly detrimental impact on the Byzantine aggregation. In contrast, we leverage the random noise to construct a first-stage aggregation that effectively rejects many existing Byzantine attacks. Moreover, based on another property of our DP variant, we form a second-stage aggregation which provides a final sound filtering. Our protocol follows the principle of co-designing both DP and Byzantine resilience.
We provide both theoretical proof and empirical experiments to show our protocol is effective: retaining high accuracy while preserving the DP guarantee and Byzantine resilience. Compared with the previous work, our protocol 1) achieves significantly higher accuracy even in a high privacy regime; 2) works well even when up to 90% distributive workers are Byzantine.
more » « less- Award ID(s):
- 2220433
- PAR ID:
- 10467376
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Management of Data
- Volume:
- 1
- Issue:
- 2
- ISSN:
- 2836-6573
- Page Range / eLocation ID:
- 1 to 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Federated learning (FL) enables multiple participants to train a global machine learning model without sharing their private training data. Peer-to-peer (P2P) FL advances existing centralized FL paradigms by eliminating the server that aggregates local models from participants and then updates the global model. However, P2P FL is vulnerable to (i) honest-but-curious participants whose objective is to infer private training data of other participants, and (ii) Byzantine participants who can transmit arbitrarily manipulated local models to corrupt the learning process. P2P FL schemes that simultaneously guarantee Byzantine resilience and preserve privacy have been less studied. In this paper, we develop Brave, a protocol that ensures Byzantine Resilience And priVacy-prEserving property for P2P FL in the presence of both types of adversaries. We show that Brave preserves privacy by establishing that any honest-but-curious adversary cannot infer other participants’ private data by observing their models. We further prove that Brave is Byzantine-resilient, which guarantees that all benign participants converge to an identical model that deviates from a global model trained without Byzantine adversaries by a bounded distance. We evaluate Brave against three state-of-the-art adversaries on a P2P FL for image classification tasks on benchmark datasets CIFAR10 and MNIST. Our results show that global models learned with Brave in the presence of adversaries achieve comparable classification accuracy to global models trained in the absence of any adversary.more » « less
-
Federated learning (FL) enables distributed agents to collaboratively learn a centralized model without sharing their raw data with each other. However, data locality does not provide sufficient privacy protection, and it is desirable to facilitate FL with rigorous differential privacy (DP) guarantee. Existing DP mechanisms would introduce random noise with magnitude proportional to the model size, which can be quite large in deep neural networks. In this paper, we propose a new FL framework with sparsification-amplified privacy. Our approach integrates random sparsification with gradient perturbation on each agent to amplify privacy guarantee. Since sparsification would increase the number of communication rounds required to achieve a certain target accuracy, which is unfavorable for DP guarantee, we further introduce acceleration techniques to help reduce the privacy cost. We rigorously analyze the convergence of our approach and utilize Renyi DP to tightly account the end-to-end DP guarantee. Extensive experiments on benchmark datasets validate that our approach outperforms previous differentially-private FL approaches in both privacy guarantee and communication efficiency.
-
We study distributed estimation and learning problems in a networked environment where agents exchange information to estimate unknown statistical properties of random variables from their privately observed samples. The agents can collectively estimate the unknown quantities by exchanging information about their private observations, but they also face privacy risks. Our novel algorithms extend the existing distributed estimation literature and enable the participating agents to estimate a complete sufficient statistic from private signals acquired offline or online over time and to preserve the privacy of their signals and network neighborhoods. This is achieved through linear aggregation schemes with adjusted randomization schemes that add noise to the exchanged estimates subject to differential privacy (DP) constraints, both in an offline and online manner. We provide convergence rate analysis and tight finite-time convergence bounds. We show that the noise that minimizes the convergence time to the best estimates is the Laplace noise, with parameters corresponding to each agent’s sensitivity to their signal and network characteristics. Our algorithms are amenable to dynamic topologies and balancing privacy and accuracy trade-offs. Finally, to supplement and validate our theoretical results, we run experiments on real-world data from the US Power Grid Network and electric consumption data from German Households to estimate the average power consumption of power stations and households under all privacy regimes and show that our method outperforms existing first-order privacy-aware distributed optimization methods.more » « less
-
Abstract Organizations often collect private data and release aggregate statistics for the public’s benefit. If no steps toward preserving privacy are taken, adversaries may use released statistics to deduce unauthorized information about the individuals described in the private dataset. Differentially private algorithms address this challenge by slightly perturbing underlying statistics with noise, thereby mathematically limiting the amount of information that may be deduced from each data release. Properly calibrating these algorithms—and in turn the disclosure risk for people described in the dataset—requires a data curator to choose a value for a privacy budget parameter, ɛ . However, there is little formal guidance for choosing ɛ , a task that requires reasoning about the probabilistic privacy–utility tradeoff. Furthermore, choosing ɛ in the context of statistical inference requires reasoning about accuracy trade-offs in the presence of both measurement error and differential privacy (DP) noise. We present Vi sualizing P rivacy (ViP), an interactive interface that visualizes relationships between ɛ , accuracy, and disclosure risk to support setting and splitting ɛ among queries. As a user adjusts ɛ , ViP dynamically updates visualizations depicting expected accuracy and risk. ViP also has an inference setting, allowing a user to reason about the impact of DP noise on statistical inferences. Finally, we present results of a study where 16 research practitioners with little to no DP background completed a set of tasks related to setting ɛ using both ViP and a control. We find that ViP helps participants more correctly answer questions related to judging the probability of where a DP-noised release is likely to fall and comparing between DP-noised and non-private confidence intervals.more » « less
-
Programmatically generating tight differential privacy (DP) bounds is a hard problem. Two core challenges are (1) finding expressive, compact, and efficient encodings of the distributions of DP algorithms, and (2) state space explosion stemming from the multiple quantifiers and relational properties of the DP definition. We address the first challenge by developing a method for tight privacy and accuracy bound synthesis using weighted model counting on binary decision diagrams, a state of the art technique from the artificial intelligence and automated reasoning communities for exactly computing probability distributions. We address the second challenge by developing a framework for leveraging inherent symmetries in DP algorithms. Our solution benefits from ongoing research in probabilistic programming languages, allowing us to succinctly and expressively represent different DP algorithms with approachable language syntax that can be used by non-experts. We provide a detailed case study of our solution on the binary randomized response algorithm. We also evaluate an implementation of our solution using the Dice probabilistic programming language for the randomized response and truncated geometric above threshold algorithms. We compare to prior work on exact DP verification using Markov chain probabilistic model checking and the decision procedure DiPC. Very few existing works consider mechanized analysis of accuracy guarantees for DP algorithms. We additionally provide a detailed analysis using our technique for finding tight accuracy bounds for DP algorithmsmore » « less