This paper studies distributed Q-learning for Linear Quadratic Regulator (LQR) in a multi-agent network. The existing results often assume that agents can observe the global system state, which may be infeasible in large-scale systems due to privacy concerns or communication constraints. In this work, we consider a setting with unknown system models and no centralized coordinator. We devise a state tracking (ST) based Q-learning algorithm to design optimal controllers for agents. Specifically, we assume that agents maintain local estimates of the global state based on their local information and communications with neighbors. At each step, every agent updates its local global state estimation, based on which it solves an approximate Q-factor locally through policy iteration. Assuming a decaying injected excitation noise during the policy evaluation, we prove that the local estimation converges to the true global state, and establish the convergence of the proposed distributed ST-based Q-learning algorithm. The experimental studies corroborate our theoretical results by showing that our proposed method achieves comparable performance with the centralized case.
more »
« less
Differentially private distributed estimation and learning
We study distributed estimation and learning problems in a networked environment where agents exchange information to estimate unknown statistical properties of random variables from their privately observed samples. The agents can collectively estimate the unknown quantities by exchanging information about their private observations, but they also face privacy risks. Our novel algorithms extend the existing distributed estimation literature and enable the participating agents to estimate a complete sufficient statistic from private signals acquired offline or online over time and to preserve the privacy of their signals and network neighborhoods. This is achieved through linear aggregation schemes with adjusted randomization schemes that add noise to the exchanged estimates subject to differential privacy (DP) constraints, both in an offline and online manner. We provide convergence rate analysis and tight finite-time convergence bounds. We show that the noise that minimizes the convergence time to the best estimates is the Laplace noise, with parameters corresponding to each agent’s sensitivity to their signal and network characteristics. Our algorithms are amenable to dynamic topologies and balancing privacy and accuracy trade-offs. Finally, to supplement and validate our theoretical results, we run experiments on real-world data from the US Power Grid Network and electric consumption data from German Households to estimate the average power consumption of power stations and households under all privacy regimes and show that our method outperforms existing first-order privacy-aware distributed optimization methods.
more »
« less
- Award ID(s):
- 2318844
- PAR ID:
- 10526754
- Publisher / Repository:
- Taylor & Francis
- Date Published:
- Journal Name:
- IISE Transactions
- ISSN:
- 2472-5854
- Page Range / eLocation ID:
- 1 to 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A Study of Privacy Preservation in Average Consensus Algorithm via Deterministic Obfuscation SignalsThis article is a study on the use of additive obfuscation signals to keep the reference values of the agents in the continuous-time Laplacian average consensus algorithm private from eavesdroppers. Obfuscation signals are perturbations that agents add to their local dynamics and their transmitted-out messages to conceal their private reference values. An eavesdropper is an agent inside or outside the network that has access to some subset of the interagent communication messages, and its knowledge set also includes the network topology. Rather than focusing on using a zero-sum and vanishing additive signal, our work determines the necessary and sufficient conditions that define the set of admissible obfuscation signals that do not perturb the convergence point of the algorithm from the average of the reference values of the agents. Of theoretical interest, our results show that this class includes nonvanishing signals as well. Given this broader class of admissible obfuscation signals, we define a deterministic notion of privacy preservation. In this definition, privacy preservation for an agent means that neither the private reference value nor a finite set of values to which the private reference value of the agent belongs to can be obtained. Then, we evaluate the agents’ privacy against eavesdroppers with different knowledge sets.more » « less
-
In this paper, we develop distributed computation algorithms for Nash equilibriums of linear quadratic network games with proven differential privacy guarantees. In a network game with each player's payoff being a quadratic function, the dependencies of the decisions in the payoff function naturally encode a network structure governing the players' inter-personal influences. Such social influence structure and the individual marginal payoffs of the players indicate economic spillovers and individual preferences, and thus they are subject to privacy concerns. For distributed computing of the Nash equilibrium, the players are interconnected by a public communication graph, over which dynamical states are shared among neighboring nodes. When the players' marginal payoffs are considered to be private knowledge, we propose a distributed randomized gradient descent algorithm, in which each player adds a Laplacian random noise to her marginal payoff in the recursive updates. It is proven that the algorithm can guarantee differential privacy and convergence in expectation to the Nash equilibrium of the network game at each player's state. Moreover, the mean-square error between the players' states and the Nash equilibrium is shown to be bounded by a constant related to the differential privacy level. Next, when both the players' marginal payoffs and the influence graph are private information, we propose two distributed algorithms by randomized communication and randomized projection, respectively, for privacy preservation. The differential privacy and convergence guarantees are also established for such algorithms.more » « less
-
A critical factor for expanding the adoption of networked solutions is ensuring local data privacy of in-network agents implementing a distributed algorithm. In this paper, we consider privacy preservation in the distributed optimization problem in the sense that local cost parameters should not be revealed. Current approaches to privacy preservation normally propose methods that sacrifice exact convergence or increase communication overhead. We propose PrivOpt, an intrinsically private distributed optimization algorithm that converges exponentially fast without any convergence error or using extra communication channels. We show that when the number of the parameters of the local cost is greater than the dimension of the decision variable of the problem, no malicious agent, even if it has access to all transmitted-in and -out messages in the network, can obtain local cost parameters of other agents. As an application study, we show how our proposed PrivOpt algorithm can be used to solve an optimal resource allocation problem with the guarantees that the local cost parameters of all the agents stay private.more » « less
-
Hardt, Moritz (Ed.)The change-point detection problem seeks to identify distributional changes at an unknown change-point k^∗ in a stream of data. This problem appears in many important practical settings involving personal data, including biosurveillance, fault detection, finance, signal detection, and security systems. The field of differential privacy offers data analysis tools that provide powerful worst-case privacy guarantees. We study the statistical problem of change-point detection through the lens of differential privacy. We give private algorithms for both online and offline change-point detection, analyze these algorithms theoretically, and provide empirical validation of our results.more » « less