Chiral fluids – such as fluids under rotation or a magnetic field as well as synthetic and biological active fluids – flow in a different way than ordinary ones. Due to symmetries broken at the microscopic level, chiral fluids may have asymmetric stress and viscosity tensors, for example giving rise to a hydrostatic torque or non-dissipative (odd) and parity-violating viscosities. In this article, we investigate the motion of rigid bodies in such an anisotropic fluid in the incompressible Stokes regime through the mobility matrix, which encodes the response of a solid body to forces and torques. We demonstrate how the form of the mobility matrix, which is usually determined by particle geometry, can be analogously controlled by the symmetries of the fluid. By computing the mobility matrix for simple shapes in a three-dimensional (3-D) anisotropic chiral fluid, we predict counterintuitive phenomena such as motion at an angle to the direction of applied forces and spinning under the force of gravity.
more »
« less
A theory of pitch for the hydrodynamic properties of molecules, helices, and achiral swimmers at low Reynolds number
We present a theory for pitch, a matrix property that is linked to the coupling of rotational and translational motion of rigid bodies at low Reynolds numbers. The pitch matrix is a geometric property of objects in contact with a surrounding fluid, and it can be decomposed into three principal axes of pitch and their associated moments of pitch. The moments of pitch predict the translational motion in a direction parallel to each pitch axis when the object is rotated around that axis and can be used to explain translational drift, particularly for rotating helices. We also provide a symmetrized boundary element model for blocks of the resistance tensor, allowing calculation of the pitch matrix for arbitrary rigid bodies. We analyze a range of chiral objects, including chiral molecules and helices. Chiral objects with a Cn symmetry axis with n > 2 show additional symmetries in their pitch matrices. We also show that some achiral objects have non-vanishing pitch matrices, and we use this result to explain recent observations of achiral microswimmers. We also discuss the small but non-zero pitch of Lord Kelvin’s isotropic helicoid.
more »
« less
- Award ID(s):
- 1954648
- PAR ID:
- 10467377
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 159
- Issue:
- 13
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Intimately connected to the rule of life, chirality remains a long-time fascination in biology, chemistry, physics and materials science. Chiral structures, e.g., nucleic acid and cholesteric phase developed from chiral molecules are common in nature and synthetic soft materials. While it was recently discovered that achiral but bent-core mesogens can also form chiral helices, the assembly of chiral microstructures from achiral polymers has rarely been explored. Here, we reveal chiral emergence from achiral conjugated polymers, in which hierarchical helical structures are developed through a multistep assembly pathway. Upon increasing concentration beyond a threshold volume fraction, dispersed polymer nanofibers form lyotropic liquid crystalline (LC) mesophases with complex, chiral morphologies. Combining imaging, X-ray and spectroscopy techniques with molecular simulations, we demonstrate that this structural evolution arises from torsional polymer molecules which induce multiscale helical assembly, progressing from nano- to micron scale helical structures as the solution concentration increases. This study unveils a previously unknown complex state of matter for conjugated polymers that can pave way to a field of chiral (opto)electronics. We anticipate that hierarchical chiral helical structures can profoundly impact how conjugated polymers interact with light, transport charges, and transduce signals from biomolecular interactions and even give rise to properties unimagined before.more » « less
-
null (Ed.)We present MultiBodySync, a novel, end-to-end trainable multi-body motion segmentation and rigid registration framework for multiple input 3D point clouds. The two non-trivial challenges posed by this multi-scan multibody setting that we investigate are: (i) guaranteeing correspondence and segmentation consistency across multiple input point clouds capturing different spatial arrangements of bodies or body parts; and (ii) obtaining robust motion-based rigid body segmentation applicable to novel object categories. We propose an approach to address these issues that incorporates spectral synchronization into an iterative deep declarative network, so as to simultaneously recover consistent correspondences as well as motion segmentation. At the same time, by explicitly disentangling the correspondence and motion segmentation estimation modules, we achieve strong generalizability across different object categories. Our extensive evaluations demonstrate that our method is effective on various datasets ranging from rigid parts in articulated objects to individually moving objects in a 3D scene, be it single-view or full point clouds.more » « less
-
We develop a non-symmetric strong multiplicity property for matrices that may or may not be symmetric. We say a sign pattern allows the non-symmetric strong multiplicity property if there is a matrix with the non-symmetric strong multiplicity property that has the given sign pattern. We show that this property of a matrix pattern preserves multiplicities of eigenvalues for superpatterns of the pattern. We also provide a bifurcation lemma, showing that a matrix pattern with the property also allows refinements of the multiplicity list of eigenvalues. We conclude by demonstrating how this property can help with the inverse eigenvalue problem of determining the number of distinct eigenvalues allowed by a sign pattern.more » « less
-
Defined based on geometric concepts, the origin of biological homochirality including the single handedness of key building blocks, D-sugars and L-amino acids, is still heavily debated in many ongoing research endeavors. Origin aside, transmission and amplification of chirality across length scales are likely essential for the predominance of one handedness over the other in chiral systems and are attracting an unabated interest not only in biology but also in material science. To offer a measure for chirality and through-space chirality transfer, we here provide a report on recent progress toward the development of a suitable approach for an a priori prediction of chirality “strength” and efficacy of chirality transfer from a chiral solute to an achiral nematic solvent. We achieve this by combining an independently calculated, suitable pseudoscalar chirality indicator for the solute with another, independently calculated scalar solute–solvent shape compatibility factor. In our ongoing pursuit to put this approach to the test, we are advancing and refining a versatile experimental platform based on achiral gold nanoparticle cores varying in size, shape, and aspect ratio capped with monolayers of chiral molecules or on intrinsically chiral cellulose nanocrystals that serve as chiral solutes in an achiral nematic liquid crystal phase acting as a reporter medium. The pitch of the ensuing induced chiral nematic liquid crystal phase ultimately serves as a reporter medium that allows us to experimentally quantify and compare chirality and efficacy of chirality transfer.more » « less
An official website of the United States government

