skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1954648

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thermal transport coefficients, notably the interfacial thermal conductance, were determined in planar and spherical gold interfaces functionalized with CTAB (cetyltrimethylammonium bromide) or MTAB (16-mercapto-hexadecyl-trimethylammonium bromide) using reverse non-equilibrium molecular dynamics (RNEMD) methods. The systems of interest included (111), (110), and (100) planar facets as well as nanospheres (r = 10 Å). The effect of metal polarizability was investigated through the implementation of the density-readjusted embedded atom model (DR-EAM), a polarizable metal potential. We find that conductance is higher in MTAB-capped interfaces, due in large part to the metal-to-ligand coupling provided by the Au-S bond. Alternatively, CTAB does not couple strongly with either the metal or the solvent, and it is largely a barrier to heat transfer, resulting in a much lower interfacial thermal conductance. Through analysis of physical contact between the ligand and the solvent, we find that there is significantly more overlap in the MTAB systems than the CTAB systems, mirroring the trends we observed in the conductance. 
    more » « less
    Free, publicly-accessible full text available January 27, 2026
  2. Free, publicly-accessible full text available November 1, 2025
  3. We present a new method for introducing stable non-equilibrium concentration gradients in molecular dynamics simulations of mixtures. This method extends earlier Reverse Non-Equilibrium Molecular Dynamics (RNEMD) methods which use kinetic energy scaling moves to create temperature or velocity gradients. In the new scaled particle flux (SPF-RNEMD) algorithm, energies and forces are computed simultaneously for a molecule existing in two non-adjacent regions of a simulation box, and the system evolves under a linear combination of these interactions. A continuously increasing particle scaling variable is responsible for migration of the molecule between the regions as the simulation progresses, allowing for simulations under an applied particle flux. To test the method, we investigate diffusivity in mixtures of identical, but distinguishable particles, and in a simple mixture of multiple Lennard-Jones particles. The resulting concentration gradients provide Fick diffusion constants for mixtures. We also discuss using the new method to obtain coupled transport properties using simultaneous particle \textit{and} thermal fluxes to compute the temperature dependence of the diffusion coefficient and activation energies for diffusion from a single simulation. Lastly, we demonstrate the use of this new method in interfacial systems by computing the diffusive permeability for a molecular fluid moving through a nanoporous graphene membrane. 
    more » « less
  4. Reverse nonequilibrium molecular dynamics simulations were used to study heat transport in solvated gold interfaces which have been functionalized with a low-molecular weight thiolated polyethylene glycol (PEG). The gold interfaces studied included (111), (110), and (100) facets as well as spherical nanoparticles with radii of 10 and 20 Å. The embedded atom model (EAM) and the polarizable density-readjusted embedded atom model (DR-EAM) were implemented to determine the effect of metal polarizability on heat transport properties. We find that the interfacial thermal conductance values for thiolated PEG-capped interfaces are higher than those for pristine gold interfaces. Hydrogen bonding between the thiolated PEG and solvent differs between planar facets and the nanospheres, suggesting one mechanism for enhanced transfer of energy, while the covalent gold sulfur bond appears to create the largest barrier to thermal conduction. Through analysis of vibrational power spectra, we find an enhanced population at low-frequency heat-carrying modes for the nanospheres, which may also explain the higher mean interfacial thermal conductance (G) value. 
    more » « less
  5. We present a theory for pitch, a matrix property that is linked to the coupling of rotational and translational motion of rigid bodies at low Reynolds numbers. The pitch matrix is a geometric property of objects in contact with a surrounding fluid, and it can be decomposed into three principal axes of pitch and their associated moments of pitch. The moments of pitch predict the translational motion in a direction parallel to each pitch axis when the object is rotated around that axis and can be used to explain translational drift, particularly for rotating helices. We also provide a symmetrized boundary element model for blocks of the resistance tensor, allowing calculation of the pitch matrix for arbitrary rigid bodies. We analyze a range of chiral objects, including chiral molecules and helices. Chiral objects with a Cn symmetry axis with n > 2 show additional symmetries in their pitch matrices. We also show that some achiral objects have non-vanishing pitch matrices, and we use this result to explain recent observations of achiral microswimmers. We also discuss the small but non-zero pitch of Lord Kelvin’s isotropic helicoid. 
    more » « less
  6. The interfacial thermal conductance from solvated gold nanostructures capped with sodium citrate was determined using reverse nonequilibrium molecular dynamics (RNEMD) methods. The surfaces of spherical nanoparticles and the (111) surfaces of fcc gold slabs were modeled using the density readjusting-embedded atom method (DR-EAM) as well as with the standard embedded atom method (EAM), and the effects of polarizability on the binding preferences of citrate were determined. We find that the binding configurations of citrate depend significantly on gold surface curvature and are not strongly influenced by surface polarizability. The interfacial thermal conductance was also determined for the spherical nanoparticles and (111) surfaces, and we find that applying DR-EAM increases the interfacial thermal conductance for systems with spherical nanoparticles much more sharply than for systems with (111) surfaces. Through analysis of excess charge density near the interface, we find that inclusion of polarizability has a larger impact on image charge creation in nanospheres than it does for the planar (111) interfaces. This effectively increases the interaction strength to polar species in the solvent, yielding larger interfacial thermal conductance estimates for the nanospheres. 
    more » « less
  7. null (Ed.)