skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: More Precise Regression Test Selection via Reasoning about Semantics-Modifying Changes
Regression test selection (RTS) speeds up regression testing by only re-running tests that might be affected by code changes. Ideal RTS safely selects all affected tests and precisely selects only affected tests. But, aiming for this ideal is often slower than re-running all tests. So, recent RTS techniques use program analysis to trade precision for speed, i.e., lower regression testing time, or even use machine learning to trade safety for speed. We seek to make recent analysis-based RTS techniques more precise, to further speed up regression testing. Independent studies suggest that these techniques reached a “performance wall” in the speed-ups that they provide. We manually inspect code changes to discover those that do not require re-running tests that are only affected by such changes. We categorize 29 kinds of changes that we found from five projects into 13 findings, 11 of which are semantics-modifying. We enhance two RTS techniques—Ekstazi and STARTS—to reason about our findings. Using 1,150 versions of 23 projects, we evaluate the impact on safety and precision of leveraging such changes. We also evaluate if our findings from a few projects can speed up regression testing in other projects. The results show that our enhancements are effective and they can generalize. On average, they result in selecting 41.7% and 31.8% fewer tests, and take 33.7% and 28.7% less time than Ekstazi and STARTS, respectively, with no loss in safety.  more » « less
Award ID(s):
2045596 2019277 1652517 2107291 2217696
PAR ID:
10467385
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400702211
Page Range / eLocation ID:
664 to 676
Format(s):
Medium: X
Location:
Seattle WA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Regression test selection (RTS) speeds up regression testing by only re-running tests that might be affected by code changes. Ideal RTS safely selects all affected tests and precisely selects only affected tests. But, aiming for this ideal is often slower than re-running all tests. So, recent RTS techniques use program analysis to trade precision for speed, i.e., lower regression testing time, or even use machine learning to trade safety for speed. We seek to make recent analysis-based RTS techniques more precise, to further speed up regression testing. Independent studies suggest that these techniques reached a “performance wall” in the speed-ups that they provide. We manually inspect code changes to discover those that do not require re-running tests that are only affected by such changes. We categorize 29 kinds of changes that we find from five projects into 13 findings, 11 of which are semantics-modifying. We enhance two RTS techniques—Ekstazi and STARTS—to reason about our findings. Using 1,150 versions of 23 projects, we evaluate the impact on safety and precision of leveraging such changes. We also evaluate if our findings from a few projects can speed up regression testing in other projects. The results show that our enhancements are effective and they can generalize. On average, they result in selecting 41.7% and 31.8% fewer tests, and take 33.7% and 28.7% less time than Ekstazi and STARTS, respectively, with no loss in safety. 
    more » « less
  2. Regression test selection (RTS) aims to speed up regression testing by rerunning only tests that are affected by code changes. RTS can be performed using static or dynamic analysis techniques. Our prior study showed that static and dynamic RTS perform similarly for medium-sized Java projects. However, the results of that prior study also showed that static RTS can be unsafe, missing to select tests that dynamic RTS selects, and that reflection was the only cause of unsafety observed among the evaluated projects. In this paper, we investigate five techniques—three purely static techniques and two hybrid static-dynamic techniques—that aim to make static RTS safe with respect to reflection. We implement these reflection-aware (RA) techniques by extending the reflection-unaware (RU) class-level static RTS technique in a tool called STARTS. To evaluate these RA techniques, we compare their end-to-end times with RU, and with RetestAll, which reruns all tests after every code change. We also compare safety and precision of the RA techniques with Ekstazi, a state-of-the-art dynamic RTS technique; precision is a measure of unaffected tests selected. Our evaluation on 1173 versions of 24 open-source Java projects shows negative results. The RA techniques improve the safety of RU but at very high costs. The purely static techniques are safe in our experiments but decrease the precision of RU, with end-to-end time at best 85.8% of RetestAll time, versus 69.1% for RU. One hybrid static-dynamic technique improves the safety of RU but at high cost, with end-to-end time that is 91.2% of RetestAll. The other hybrid static-dynamic technique provides better precision, is safer than RU, and incurs lower end-to-end time—75.8% of RetestAll, but it can still be unsafe in the presence of test-order dependencies. Our study highlights the challenges involved in making static RTS safe with respect to reflection. 
    more » « less
  3. Regression testing - rerunning tests at each code version to detect newly-broken functionality - is important and widely practiced. But regression testing is costly due to the large number of tests and high frequency of code changes. Regression test selection (RTS) optimizes regression testing by rerunning only a subset of tests that can be affected by code changes. Researchers showed that RTS based on dynamic and static program analysis can save substantial testing time for (medium-sized) open-source projects. Simultaneously, practitioners showed that RTS based on machine learning (ML) is lightweight and works well on very large software repositories, e.g., in Facebook’s monorepository. We combine analysis-based RTS and ML-based RTS by using ML-based RTS to choose a subset of tests selected by analysis-based RTS. To do so, we first design several novel ML-based RTS techniques that leverage mutation analysis to obtain a training set for learning the impact of code changes on test outcomes. Then, we empirically evaluate, using 10 projects, the benefits of combining various ML models with analysis-based RTS. We also compare combining the techniques with using each technique individually. Combining ML-based RTS with two analysis-based RTS techniques - Ekstazi and STARTS - selects 25.34% and 21.44% fewer tests. 
    more » « less
  4. Regression testing---rerunning tests on each code version to detect newly-broken functionality---is important and widely practiced. But, regression testing is costly due to the large number of tests and the high frequency of code changes. Regression test selection (RTS) optimizes regression testing by only rerunning a subset of tests that can be affected by changes. Researchers showed that RTS based on program analysis can save substantial testing time for (medium-sized) open-source projects. Practitioners also showed that RTS based on machine learning (ML) works well on very large code repositories, e.g., in Facebook's monorepository. We combine analysis-based RTS and ML-based RTS by using the latter to choose a subset of tests selected by the former. We first train several novel ML models to learn the impact of code changes on test outcomes using a training dataset that we obtain via mutation analysis. Then, we evaluate the benefits of combining ML models with analysis-based RTS on 10 projects, compared with using each technique alone. Combining ML-based RTS with two analysis-based RTS techniques-Ekstazi and STARTS-selects 25.34% and 21.44% fewer tests, respectively. 
    more » « less
  5. Regression testing - running available tests after each project change - is widely practiced in industry. Despite its widespread use and importance, regression testing is a costly activity. Regression test selection (RTS) optimizes regression testing by selecting only tests affected by project changes. RTS has been extensively studied and several tools have been deployed in large projects. However, work on RTS over the last decade has mostly focused on languages with abstract computing machines(e.g., JVM). Meanwhile development practices (e.g., frequency of commits, testing frameworks, compilers) in C++ projects have dramatically changed and the way we should design and implement RTS tools and the benefits of those tools is unknown. We present a design and implementation of an RTS technique, dubbed RTS++, that targets projects written in C++, which compile to LLVM IR and use the Google Test testing framework. RTS++ uses static analysis of a function call graph to select tests. RTS++ integrates with many existing build systems, including AutoMake, CMake, and Make. We evaluated RTS++ on 11 large open-source projects, totaling 3,811,916 lines of code. To the best of our knowledge, this is the largest evaluation of an RTS technique for C++. We measured the benefits of RTS++compared to running all available tests (i.e., retest-all). Our results show that RTS++ reduces the number of executed tests and end-to-end testing time by 88% and 61% on average. 
    more » « less