skip to main content

This content will become publicly available on April 1, 2024

Title: Crystalline–Amorphous Nanostructures: Microstructure, Property and Modelling

Crystalline metals generally exhibit good deformability but low strength and poor irradiation tolerance. Amorphous materials in general display poor deformability but high strength and good irradiation tolerance. Interestingly, refining characteristic size can enhance the flow strength of crystalline metals and the deformability of amorphous materials. Thus, crystalline–amorphous nanostructures can exhibit an enhanced strength and an improved plastic flow stability. In addition, high-density interfaces can trap radiation-induced defects and accommodate free volume fluctuation. In this article, we review crystalline–amorphous nanocomposites with characteristic microstructures including nanolaminates, core–shell microstructures, and crystalline/amorphous-based dual-phase nanocomposites. The focus is put on synthesis of characteristic microstructures, deformation behaviors, and multiscale materials modelling.

more » « less
Award ID(s):
2132336 2331482
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ni-SiOC nanocomposites maintain crystal-amorphous dual-phase nanostructures after high-temperature annealing at different temperatures (600 °C, 800 °C and 1000 °C), while the feature sizes of crystal Ni and amorphous SiOC increase with the annealing temperature. Corresponding to the dual-phase nanostructures, Ni-SiOC nanocomposites exhibit a high strength and good plastic flow stability. In this study, we conducted a He implantation in Ni-SiOC nanocomposites at 300 °C by in-situ transmission electron microscope (TEM) irradiation test. In-situ TEM irradiation revealed that both crystal Ni and amorphous SiOC maintain stability under He irradiation. The 600 °C annealed sample presents a better He irradiation resistance, as manifested by a smaller He-bubble size and lower density. Both the grain boundary and crystal-amorphous phase boundary act as a sink to absorb He and irradiation-induced defects in the Ni matrix. More importantly, amorphous SiOC ceramic is immune to He irradiation damage, contributing to the He irradiation resistance of Ni alloy.

    more » « less
  2. Nanocrystalline and nanolaminated materials show enhanced radiation tolerance compared with their coarse-grained counterparts, since grain boundaries and layer interfaces act as effective defect sinks. Although the effects of layer interface and layer thickness on radiation tolerance of crystalline nanolaminates have been systematically studied, radiation response of crystalline/amorphous nanolaminates is rarely investigated. In this study, we show that irradiation can lead to formation of nanocrystals and nanotwins in amorphous CuNb layers in Cu/amorphous-CuNb nanolaminates. Substantial element segregation is observed in amorphous CuNb layers after irradiation. In Cu layers, both stationary and migrating grain boundaries effectively interact with defects. Furthermore, there is a clear size effect on irradiation-induced crystallization and grain coarsening. In situ studies also show that crystalline/amorphous interfaces can effectively absorb defects without drastic microstructural change, and defect absorption by grain boundary and crystalline/amorphous interface is compared and discussed. Our results show that tailoring layer thickness can enhance radiation tolerance of crystalline/amorphous nanolaminates and can provide insights for constructing crystalline/amorphous nanolaminates under radiation environment. 
    more » « less
  3. Abstract

    Liquid metal (LM) exhibits a distinct combination of high electrical conductivity comparable to that of metals and exceptional deformability derived from its liquid state, thus it is considered a promising material for high-performance soft electronics. However, rapid patterning LM to achieve a sensory system with high sensitivity remains a challenge, mainly attributed to the poor rheological property and wettability. Here, we report a rheological modification strategy of LM and strain redistribution mechanics to simultaneously simplify the scalable manufacturing process and significantly enhance the sensitivity of LM sensors. By incorporating SiO2particles into LM, the modulus, yield stress, and viscosity of the LM-SiO2composite are drastically enhanced, enabling 3D printability on soft materials for stretchable electronics. The sensors based on printed LM-SiO2composite show excellent mechanical flexibility, robustness, strain, and pressure sensing performances. Such sensors are integrated onto different locations of the human body for wearable applications. Furthermore, by integrating onto a tactile glove, the synergistic effect of strain and pressure sensing can decode the clenching posture and hitting strength in boxing training. When assisted by a deep-learning algorithm, this tactile glove can achieve recognition of the technical execution of boxing punches, such as jab, swing, uppercut, and combination punches, with 90.5% accuracy. This integrated multifunctional sensory system can find wide applications in smart sport-training, intelligent soft robotics, and human-machine interfaces.

    more » « less
    more » « less
  5. Abstract

    Nanograined metals have the merit of high strength, but usually suffer from low work hardening capacity and poor thermal stability, causing premature failure and limiting their practical utilities. Here we report a “nanodispersion-in-nanograins” strategy to simultaneously strengthen and stabilize nanocrystalline metals such as copper and nickel. Our strategy relies on a uniform dispersion of extremely fine sized carbon nanoparticles (2.6 ± 1.2 nm) inside nanograins. The intragranular dispersion of nanoparticles not only elevates the strength of already-strong nanograins by 35%, but also activates multiple hardening mechanisms via dislocation-nanoparticle interactions, leading to improved work hardening and large tensile ductility. In addition, these finely dispersed nanoparticles result in substantially enhanced thermal stability and electrical conductivity in metal nanocomposites. Our results demonstrate the concurrent improvement of several mutually exclusive properties in metals including strength-ductility, strength-thermal stability, and strength-electrical conductivity, and thus represent a promising route to engineering high-performance nanostructured materials.

    more » « less